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ABSTRACT

This thesis is concerned with inertial navigation of vehicles
during short time intervals for which the predominant accelerations are
non-gravitational. Due to the high time correlations of random errors
associated with an inertial measurement unit, it is possible to assume
accelerometer measurements which are perfect except for random
constant error coefficients. Statistical estimation theory is applied
to navigation systems with assumed perfect measurements and the
estimation errors associated with such a statistical navigation system
are compared with errors derived from conventional deterministic
navigation systems.

The design and effectiveness of the statistical navigation system
depend on the number of independent white noise elements driving the

non-gravitational or specific force accelerations. If this number is equal

to or less than the number of measurements observed, the estimation
errors of the statistical system are shown to asymptotically approach
zero.

Development of a statistical navigation system for an Apollo
re-entry mission is presented. The nature of the sensitivity of ac-
celeration variations to some components of white noise suggests a
statistical navigation system containing two independent filters which
are employed alternately as the vehicle roll angle is altered. Such
a system is shown to be effective in immediately reducing initial
estimation errors. A simplified single filtering navigation system
is obtained with the inclusion of arbitrary additive.white noise in the
measurements. This system reveals a more continuous but equally
dramatic reduction of initial estimation errors. Both systems show
a marked improvement in navigation accuracy over the conventional
deterministic approach.
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CHAPTER 1

INTRODUCTION

Steering or controlling a vehicle to some prescribed des-
tination can be performed by the operation, in cascade, of four
subsystems:

1. A measurement system which gathers information describing
the state of the vehicle.

2. A navigation system which processes the measurements to
determine the present location and course of the vehicle.

3. A guidance system which compares the present course with
one which will intersect the destination and generates maneu-
ver commands to steer the vehicle on the intersecting course.

4. A control system which controls the vehicle to comply with

the commands received from the guidance system.

This thesis is concerned with the gathering and processing of
information to determine the present state of the vehicle, i.e., the
measurement and navigation systems. The form of the navigation
system depends on the type of information received from the measure-
ment system, which, in turn, depends on the surrounding environment
in which the vehicle is traveling. For example, travel on land allows
a measurement system to observe recognizable land sites or road
markings which are used by the navigator through comparison with

reference markings on a map to determine position of the vehicle.




Without the availability of landmarks, the measurement system must
depend upon other sources of information within the environment.
These sources could include radiation links through radar to known
positions, or sightings of celestial bodies and constellations. Celes-
tial sightings were used extensively in early sea navigation and are
employed today for navigation in "free fall" space flight.

The development of inertial measurement devices provided a
new source of information to navigation systems. The natural property
of the inertial measurement unit (IMU) to maintain a known reference
orientation and to sense specific force accelerations allows for a self
contained navigation system aboard vehicles such as ships, aircraft
and spacecraft operating in an environment of known gravitational field.
Vehicle position and velocity can be obtained through integration of the
total acceleration received from the IMU and from knowledge of the
gravitational acceleration acting on the vehicle.

Associated with any measurement system is an inherent error
or unceértainty which forbids the exact determination of position by
the navigator. Additional errors might be introduced by the navigator
itself while converting the measurement data into vehicle position and
velocity components. In the case of inertial navigation systems, initial
condition uncertainties play a large role in navigation errors through-
out the mission.

If the navigator employs only the measurement data in deter-
mining the state of the vehicle, it must be content to accept these
errors. However, if the navigator has available any additional infor-

mation concerning the environment in which the vehicle is traveling,




the dynamics of the vehicle itself, and/or the characteristics of the
measurement system, which would allow it to predict what the meas-
urement should be, it could compare this prediction with the actual
measurement. If the predicted and measured values do not agree, then
the navigator could choose some value in between the two depending
upon which value it considered more likely to be correct.

This method of obtaining more accurate estimates of vehicle
position has been used quite extensively in the past. Inertial naviga-
tion systems aboard vehicles moving at low speeds near the surface
of the earth recognize the fact that the primary specific force acting
on the vehicle is the gravitational force directed normal to the earth's
surface, and that the earth rotates at a known constant rate. Hence,
by forcing the IMU platform to maintain a level position normal to the
measured specific force and to rotate at the earth rate, improved
estimates could be made of the vehicles latitude and azimuth through
comparison of the orientation of this platform with a fixed inertial
coordinate frame.

A more systematic method of improving the knowledge of the
state of the vehicle is found through the use of optimal estimation
theory in which the entire system is treated in a statistical sense.
Statistical estimation theory was first developed by Wiener(l) and
later set into a more general "state space' context by Kalman. (2)
This theory uses knowledge of the vehicle dynamics, as well as the
statistical properties of random forcing functions inherent in the
vehicle dynamics and measurement system, to design a filter whose

output is an estimate of the vehicle position and velocity. The



mathematical framework of the filter was presented in an historic
paper by Kalman and Bucy. (3)

Many persons have studied navigation systems incorporating
statistical estimation theory. Such navigation systems first became

(4)(5)

operational through the Minivar Program for orbit prediction of

earth satellites. Navigation aboard a circumlunar vehicle was studied

(6)

by Smith, et.al. and later by Farre11(7) for measurements from
radar and celestial data.

An independent derivation of statistical estimation theory was
provided by Battin(S) for achieving '""maximum likelihood'' navigation
from discrete celestial sightings during midcourse space flight.

Until recently, statistical estimation was employed only to
"free fall'' space trajectories for which the vehicle dynamics could be
modeled quite accurately from knowledge of the surrounding gravita-
tional fields. Its application was carried to navigation of vehicles near

(9) and Brown and Friest(lo)

(11)

or on the earth by Fagin using position

fixes and velocity log data and later by Brock with the use of inertial
measurement data. These studies assumed the primary specific force
on the vehicle to be the negative of the gravitational force and the
primary motion of the vehicle with respect to an inertial frame to be
the earth's rotation. Hence these studies were applicable to vehicles
maintaining essentially constant low speed near the earth.

Significantly new and different navigation problems arise when
the vehicle is accelerated primarily by forces other than gravitational

or apparent forces. This phase of high acceleration is usually a small

portion of an overall mission such as ascent, descent, orbital change,




or re-entry of a space craft or gross maneuvers of a sea-going vessel.
Hence it is usually of short time duration and the primary forces are
propulsive, aerodynamic or hydrodynamic.

Navigation during these maneuvers has been accomplished in
the past through basically deterministic methods with IMU measure-
ments or radar tracking data. The high accuracy of inertial meas-
urement devices provides excellent knowledge of the specific force
accelerations. The accuracy of the navigation, however, is greatly
impaired by the uncertainty in initial knowledge of the state of the
vehicle, which cannot be corrected by deterministic integration of the
accelerations. Radar data provides considerable aid in reducing these
uncertainties but is limited by its availability during some mission
phases.

Few studies have been directed towards the extension of
statistical estimation theory to navigation during these high accel-
eration maneuvers. Wagner(lz) has investigated the employment of
the Kalman-Bucy filter for accurate prediction of re-entry orbits with
the use of measurements from both on-board inertial accelerometers
and ground-based tracking stations. In this study the random measure-
ment errors for both systems were assumed to be additive white noise.
It has been found that the white noise assumption is quite valid in
describing radar measurement uncertainties. However, intensive
study of inertial measurement systems reveal that the random error
coefficients describing errors inherent in these systems are highly
correlated in time and hence, during relatively short intervals of time,

could better be represented as random constants.




The development of statistical estimation theory for measure-
ments containing colored noise by Bryson and Johansen(13) and by
Deyst(14) has paved the way for study of navigation systems in which
the information received is essentially perfect. The application of this
perfect measurement estimation theory could be applied in conjunction
with the inertial measurement system to provide for a more realistic
and accurate navigation system during periods of finite specific force
accelerations. This is the basis for the present research described

within this thesis,

1.1 Thesis Objective

This thesis develops a statistical navigation system to be em-
ployed with an inertial measurement unit for vehicles encountering
accelerations predominately due to non-gravitational specific forces,
and shows the applicability of such navigation systems to a represent-
ative mission phase of atmospheric re-entry.

Chapter II contains the theoretical development of the naviga-
tion system which is statistical in nature and a comparison with the
conventional (deterministic) system. The application of statistical
inertial navigation to atmospheric re-entry is illustrated in Chapter
III. Chapter IV presents numerical results obtained from a computer
simulation of a typical Apollo re-entry mission and shows a marked
improvement in accuracy of the statistical navigator over the conven-
tional navigation scheme. Conclusions and recommendations derived

from this research are discussed in Chapter V.,




CHAPTER II

DEVELOPMENT OF INERTIAL NAVIGATION SYSTEMS

This chapter develops an inertial navigation system for
vehicles acted upon by specific forces over short periods of time.

The estimation errors associated with a deterministic and statistical
navigation system are compared.

Within this chapter, navigation will be considered only with re-
spect to an inertial reference frame. This allows the presentation of
meaningful results without the complexities introduced by transforma-
tion to an accelerating or rotating frame of reference. The application
of re-entry navigation considered in Chapter III will study navigation
in a non-inertial coordinate system.

Navigation will also be confined to the determination of position
and velocity of a vehicle with the vehicle assumed as a mass particle.
The attitude of the vehicle will not be considered in this thesis.

The development of an inertial navigation system presupposes
knowledge of the operation of an inertial measurement unit. Hence,

we begin with a brief description and error analysis of this unit.

2.1 Description of IMU

An inertial measurement unit (IMU) is composed of acceler-
ometers mounted orthogonally on a platform which is controlled by

gyros to maintain a fixed orientation in inertial space.



An accelerometer may be viewed, for our present purpose, as
a linear mass-spring combination, When subjected to an external force,
the mass will be deflected by an amount proportional to the magnitude of
the acceleration caused by this force. However, an accelerometer will
not give an indication of the total acceleration of the vehicle, but rather
the difference between the true acceleration and the field or apparent
force accelerations. This difference is called the acceleration due to

the specific forces acting on the vehicle, e.g., propulsive, aerodynamic,

and bouyant forces.
The errors in an IMU may be attributed to two independent
sources: misalignment of the stable platform from the expected true
inertial orientation and errors in accelerometer readings. Misalign-
ment is caused by drifting of the gyros from their preset orientation
and by an initial misalignment of the stable platform. Gyro drift rate, .
(15)

according to Laning , is well approximated by a quadratic depend-

ence on the specific force acceleration and may be written as

A.=w +WT aTW

+
i do,  Mai 2st T 2sf (2.1)

d. &sf
1

where Ai is the drift angle of the ith gyro element,

g is the vector specific force acceleration,

Yior Yar and Wd are, respectively, the bias,

acceleration-sensitive, and acceleration
squared-sensitive error coefficients for
.th
the i~ gyro element,
and where A.(t) is the initial misalignment angle about the

ith gyro input axis.




If we consider the drift component of each gyro as a component
of a three dimensional drift vector, 4, we may determine the error in
measured acceleration due to the stable platform misalignment as the
vector product of A with the measured acceleration vector

6 =
Egyro st ¥ 4

or, simply as

52 oro - D18 (2. 2)

The error in accelerometer reading is also well approximated

by a quadratic dependence on the specific force acceleration as

= + T T

+
aaaccel. . Wao. Wal. Esf asf Wa. asf (2.3)
i i i i
where 6aacce1 is the error in the ith accelerometer and where
*i
Yoo wor and Wa are the error coefficients relating the dependence

of this error on the measured accelerations.
The total error in acceleration information received from the

IMU may then be described as

= +
62m DIA— 651accel. (2. 4)

All of the error coefficients, Wio **° Wa are, in general,
random variables with non-zero mean values. However, with ade-
quate testing, calibration, and compensation, it is possible to make

the mean values zero.
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The statistical properties of these error coefficients have been
the concern of much research during the past several years(lé)(”)(lg)(lg)
These studies have shown that the error coefficients Yo' Yar1 and Wd
may be considered as random constants over time periods of less than
one to three hours.

If we consider all the error coefficients (w ... W, ) contained
as individual elements in a random constant vector, w (the inclusion of
all 13 coefficients each for three gyros and three accelerometers would
imply 78 elements in the w vector), equations (2.3) and (2.1) for accel-

erometer error and drift rate may then be written as linear combina -

tions of the vector w as

6EL-aLccel. = DZ2

= Dyw (2.5)

=X

where the matrices D.2 and D3 would each be of dimension 3x78 and

would take the form

C ] o) 6] O O O

D, = 0O L] o) O O O

o} 6) [ ] O O O

o o o [ ] o) )

D, = O O O O L ] (@)
O O O o) O [ ]

with each O being a 13 element row vector of zeros and [ ]beinga

13 element row vector of functions of a—sf'
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With the aid of a new vector E defined as

b = ——— (2.6)
w

we may then represent the IMU acceleration error, (2.4), as-

Ggm = Eb (2.7)
where the matrix, E, is defined as

- |

E = Dl: D, (2.8)

and where
[}
. O | D,
E = DOE = __-%..__ 9 (2. 9)
O, 0

The matrices D0 through D3 depend upon the specific force accelera-
tion time histories of the vehicle from initial alignment of the platform.
The vector b will thus be a random vector with assumed known statis-

tical characteristics represented by the mean
elbwl = o0
and by the covariance matrix

P (t) = € [g(t)g(t)T] (2.10)
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2.2 Deterministic Navigation with IMU Measurements

The equations of motion of a vehicle considered as a mass
particle may be obtained from Newton's laws as

v=a
f_ - v (2.11)
The total acceleration, a, of a vehicle, is composed of specific force
accelerations, a ., measured by the IMU, and of gravitational accel-
erations, g . The specific force accelerations will, in general, be a
function of the position and velocity of the vehicle, and time. Since no
information is received from the measurements concerning the gravi-
tational acceleration, this term must be derived from prior knowledge
of the gravitational field and from the present estimate of the vehicle's
position in this field. If such knowledge is available, determination of

vehicle position and velocity may be obtained as the solution of the

differential equations

(2.12)

where r (t) and V(t) represent the estimate of the vehicle position and
velocity at time, t, and an is the acceleration information received
from the IMU.

In order to study the errors in this deterministic navigation
scheme, we consider linear perturbations about a nominal path of the
vehicle with the use of a first order Taylor series expansion (Hansen,

et.al., (20) 5how that such linearization gives acceptable results even
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for a highly non-linear re-entry trajectory). The actual path of the

vehicle may thus be represented as

vit) = v () + évi(t)

r(t) go(t) + 6r(t)

where the subscript o refers to the nominal path and 6r and bv
describe small perturbations about the nominal path which we consider
as random variables. In the same manner, we may describe our esti-

mate of the actual path as

i) T v () +oT ()

T(t) = r () + 6F()

With the linearity assumption, we may express the differential equations

of the variations in actual position and velocity as

by = ba = ba (v, r,t) * g (r)

Sr = &

I<

We will assume that the model of the gravitational field is suf-
ficiently accurate to describe the effects of earth oblateness and of the
gravitational fields of other nearby celestial bodies. (The result of
intentionally ignoring these effects is deterministic in nature and could
be examined independent of the present statistical analysis.) Variations
from the known nominal gravitational accelerations will then be caused
by random gravitational anomalies as well as to the random perturba-

tions in the radial position, dr, within the known gravitational field.
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An investigation of the random gravitational anomalies might allow
us to create a representative colored noise model of these variations,
which, in turn, could be obtained from white noise through the use of
shaping filter techniques. For purposes of simplicity, however, we
will cautiously consider these random variations to be of such high
frequency that they could be represented as white noise. With these

assumptions, then, we can express &g as

og
dg(t) = — 8r + u_ = Tdér * u (2.13)
or -g - g

where u is white noise with

e[p_g] =0

and elu,u M7 = Qo) (2.14)

Here €[ ] represents the expected value or ensemble average of [ 1],
and 6(t-T) is the Dirac delta function.

The types of specific forces encountered by vehicles within this
study are primarily propulsive or aerodynamic forces and are normally
under some control by the vehicle. Variations in the specific force
accelerations, thus, will be due to variations in the control implemen-
tation from the nominal prescribed values. If the specific forces are
also dependent upon the state of the vehicle, additional variations will
be realized due to the random perturbations of the position and velocity,
With a caution similar to that discussed above, we assume the control

implementation variations to be a linear function of independent white
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noise elements. Hence we express the total variation in agp as
9a 9a
_ ~—sf —sf
63sf‘ ™ bv + Py 6£+Gfgf

or éisf = Fv6X+ Fréz + Gf_gf (2. 15)
where e[ Ef(t) ] = 0
and el ut) udm)T] = Qut) 6 (t-7) (2. 16)

uglt) vy Q :

The linearized perturbations of the actual System may then be

expressed as

[og)
<.
|

Fvéx + (Fr+l‘)6£ + Eg + Gfgf

br = 5v (2.17)

Perturbations in our estimate of the position and velocity may

be derived in like manner as

o
l<l-
!

Gisf(y_,_{,t) + 6§m + 8g (r)

o
=)
i
o
1<l

(2.18)

where § a s and § 8 areexpressed by (2.15) and (2.4) and where
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We note the absence of the white noise in the gravitational accelera-
tion, Eg’ here due to the deterministic computation of g by the

navigation system. Hence, we obtain

o
1<l
1

FV5X + Fr6£ + I‘<S£ + Gfgf + éim

o
(]

il

on
1<l

(2.19)

The errors in estimation of the actual position and velocity

may be expressed as the differences

1
o

<

1
(og}
1<l

il
o
=

1
o
(Le]

|
=3
o
“+
c

i
3
lon

= e (2.20)

these equations become

é = Be + E'b + GEg (2.21)
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where the matrices B, E', and G are defined as

and where O and I are the null and identity matrices, respectively.
We assume the mean value of the random vector, e, to be zero

and define the covariance matrix of e to be

Pt) = elee?] (2. 22)

We now have two sets of linear differential equations (2. 9) and (2. 21)
which define the random errors associated with a deterministic naviga-
tion system. Through combining these two sets into one set, we may
derive the differential equation for the statistical parameters of these

errors as follows:

Define the augmented vector

|z

and its correlation matrix
~ _ T
P(t) = ele(t)e(t) ] (2. 23)

From (2.9) and (2. 21), we obtain

o= B |E' G
€ [b“:—D-o-] e + I:'()-] Uy (2. 24)
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from which follows

Br) =eleel +¢e¢T]
_ [B!El s .= |BT!oO
= | =222 + P s
815 70 P i
§ (o]
g T,
+ [-(-)-] Qg (G i0] (2.25)
Noting that
~ i Py ()
Pi) = .E%)--T__QIE__
pL )i P, (1)
where P,t) = elembwT], (2. 26)

we may write the differential equations for the individual covariance

and P, , as

matrices, P, Peb’ b

B(t) =BP+PBT+GQgGT
T T
+ +

E'P_ P, E (2.27)
. - T
Pyt = BP_ + P_D = + EP_ (2. 28)
P(t) =DP, +P DT (2.29)
b o b b~ o )

These equations have a one-way coupling only so they may be

solved in cascade, i.e., P, (t) may be found from (2.29) and used as
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input to find TJeb(t) from (2.28), which in turn is used as input to find
P(t) from (2.27). We note that the initial value of P, describes the
statistical properties of the gyro misalignment and of the gyro accel-

erometer error coefficients.

2.3 Statistical Navigation with IMU Measurements

In the deterministic navigation scheme described above, it was
necessary to have a knowledge of the gravitational forces acting on the
vehicle. The use of this knowledge, together with the measurements
of the specific force accelerations permitted the estimation of position
and velocity through integration from known initial conditions.

The error analysis of this scheme, however, required more
information than was required in the navigation equations alone. In
particular, we assumed that the perturbations in acceleration can be
approximated by white noise having zero mean and known correlation,
and that the measurement errors are random constants. If these assum-
tions are valid for any particular mission and reasonable statistical data
is available, then we are able to obtain a good estimation of the naviga-
tion errors for that mission.

We now pose the obvious question: If such assumptions are valid
and we have available the statistical data for a particular mission, is it
possible to incorporate this additional information directly into the navi-
gation system in order to reduce the inherent error in the system? The
answer to this question is yes. The method of utilizing the additional
information in an optimal manner is the subject of statistical estimation

theory.
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In practice, the use of statistical estimation theory in naviga-
tion systems requires that the navigator have available both an actual
model (usually nonlinear) of the dynamics of the vehicle and a linear
model describing first order perturbations about the nominal path.
The position and velocity of the vehicle are determined as the sum of
the nominal values (obtained from the nonlinear model) and the best
estimate of the perturbations from nominal. The best estimate of
the perturbations are, in turn, obtained through optimally filtering
the measurements with the use of the known statistical properties of
the measurement and acceleration random errors.

The design of the filter is discussed in the next section assum-
ing perfect measurements. Later it will be shown how the design can

be modified to account for random measurement errors.

2.3.1 Optimal Filter for Perfect Measurements

In order to provide the background for optimal estimation of
systems having perfect measurements, we first review the results of

(2)

Kalman for noisy measurements. We assume the dynamics of our

linear model to be described by the random process

x(t) = Fx *+ Gu (2.30)

where x(t) is a vector of random variables describing the state of the

system with initial conditions

elxt)] =0

and 8[§(to)§(to)T] = P(t,)
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and u(t) is assumed to be independent white noise with mean

elu)] =0

and covariance

eluwumT] = Qt)8(t-T)

(2.31)
where Q(t) is nonsingular.

The state of the system is observed through measurements,

z (t), which are related to the state by the linear function

z(t) = Ht) x(t) + n(t) (2.32)

where M(t) is assumed white noise in the measurements with zero
mean and covariance

elnwnmT] = Rt)6(t-7)

(2.33)

We assume that there is correlation between the process noise,

u (t), and the measurement noise, n(t), and that it is adequately de-
scribed by the correlation matrix

elut)nmT1 = s(t) 6(t-7)

(2. 34)

We can determine an estimate of x(t) through solution of the differential
equation

%

= FX + K(z-HX) (2.35)

where K is a gain matrix which '"'weights'' the difference between the
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actual and predicted measurements. Kalman(z) shows that the optimum

gains are obtained as

K(t) = (PHY + G8) R (2. 36)

where P(t) is the covariance of the error in the estimate of the state x
P(t) = e[ (x(t) -%()) (x(t) -X(1))7T ]

and is found through solution of the differential equation

T T

Pt) = FP + PF! + GQGT - KRK (2. 37)

For a perfect measurement system, n(t) = 0 in (2.32). The
filter K(t) for this case is undefined since the matrix R is singular and
cannot be inverted. Physically, such an assumption means that some
linear combinations of the state variables are known exactly as soon as
the measurements become available. Hence, it is possible to reduce
the number of state variables to be estimated to only those variables
which are not perfectly inferred from the measurements. Bryson and

(

Johansen 13) have developed a method of reducing the state which we
briefly review here.
Suppose we have measurements y related to the state through

the relation
y = Cx (2. 38)

Since y contains no white noise, it is reasonable to differentiate y,
repeatedly if necessary, using the state equations (2. 30) to eliminate

the appearance of x, until a new signal is obtained which contains
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independent elements of the white process noise, u(t). These final
signals which contain white noise are grouped into a vector z (t); the
elements of y and its intermediate time derivatives which are free of
white noise are combined to form a vector X, The X , vector can
be treated as a linear function of the state x which is known exactly

from the measurements. Thus, we can obtain

X, © M2§ (2.39)

x, = M;x (2.40)

M
such that M = [Mljl is non-singular, we can infer the state x
» 2

from x, and X, as

X
= mL {__1_} (2.41)

[ >

X2

The vector z can be treated as a new measurement with white noise

defined as
E=Hx+Du (2.42)

With this new formulation, we can now apply the Kalman filter

to estimate 51“) as

.
~

= x. + + “HY
Xy 7 FniXy T OFpx; T Kz -Hx,) (2.43)
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where the matrices F11 s F12 , and H are found as

F.. F .
1712t -yt s MMt (2. 44)
Foy Fap
H-=u M |l (2. 45)
] o :

and where z' = z - H M1 [O] x

The optimal gain is determined as

K= (P, H + G, S)R (2. 46)
where

G, = M, G (2.47)

s = QDT (2. 48)

R = DQD?T (2. 49)

and where P1 is the covariance of the error in estimate of x

P () = elx, -%)(x, -%)"]

and is determined through the differential equation

. _ T T
= + +
Pl B 1 P1 P.F GlQGl

1 1 11 - KRKT (2.50)

The initial conditions of P1 are obtained as

= T
P (t.*) = M, () Pt M, (t ) (2.51)
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X = M) Pt )M, (t)

LM, ) Ple) Myt )T 17 x 0t ) (2.52)

where
- ) T
P(to+) P(to) P(to) M, (to) L Mz(to)

T -1
P(t_) M, (to)] M, (t,) P(t ) (2.53)

and where P(to) is the initial covariance of the error in §(t) before
the first measurement has been taken.
Hence, from the estimate of X, and the direct computation of
X,, We are able to obtain the best estimate of §(t) from
-1 x,®

X)) = M () (2. 54)
X ,(t)

with the covariance of error in this estimate as

P.(t) O
P@t) = M 1) 1 ] M L)T (2. 55)
O O

The above relations have been extracted from Bryson and

(13)

Johansen as a special case of their general treatment of colored
noise in the measurements.

Since the information concerning error in the estimate of the
state is obtained from the covariance matrix, Pl(t) , let us investigate

equation (2. 50) in light of the sources of this error. The first two

terms on the right hand side of (2. 50) relate a linear dependence of
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the errors at time t to the initial errors at time to and upon the
nominal path through the matrix Fll' The final term tends to reduce
the estimation errors through the processing of measurements with K,
while the G1 Q GlT term is a positive semi-definite forcing function
which will always tend to increase the estimation errors due to the
presence of the process noise.

We note, however, that our newly defined measurements (2. 42)
are driven by a linear combination of the same process noise as is
driving the system (2.30) itself. Hence, there should be some reduction
of the forcing term in (2. 50) due to the fact that we obtain information
concerning the process noise from the measurements. This premise
is observed analytically by substitution of K into equation (2. 50) to
obtain

L T
= + +
P, = F,P,+* P\F); TGQG,

T

- (PIHT +G,S) r! '(PIHT + GIS)T

- -1 -1..,T
= - + -
(F11 GISR H)P1 Pl(Fll GISR H)

-p,HTR'HP + GIQGlT - G,S r!sTq,T (2.56)

From (2.48) and (2.49) we obtain

1

sr! = T o@Dt (2.57)

and

-1.T

SR!'s -1

- qp'mqedH!'paQ (2. 58)

so that the total forcing term in f’l becomes
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T

G,(Q - srtsT) G,

G, @-apTmepH'pa,’

t

G, Q G, (2.59)

Since the D matrix describes the linear combination of process
noise elements which is measured exactly by the measurements, z,
we find that this combination of noise elements is eliminated from the
forcing function for 1.31 . This elimination may be shown in a more
rigorous manner if we assume the process noise vector, u, to be of
dimension m and the measurement vector, z, of dimension r. By

definition, the matrices Q and D are of rank m and r, respectively.

If we note that

DQ DY = DQDY - p@DT = 0

and that @ is of dimension mxm, then the rank of @ must be less than
or equal to m - r. Hence, the subtraction of S R-1 ST from Q in (2.59)
has reduced the number of independent forcing elements by at least r.

We also observe a reduction of the linear coefficients F11 by
the product G1 S R_1 H in (2.56). The physical significance of this re-
duction can better be described when applied to the navigation system
in the next section.

An interesting specialization of the optimal filter for perfect
measurements is the case for which the number of independent obser-
vations in the vector y (2.38) is greater than or equal to the number

of independent process noise elements in u. Upon defining the new
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measurements, z, by (2.42), we find that the D matrix will be of
dimension mxm, of rank m, and hence invertible. For this special

case, we obtain

g =q-ep' et hpe =0

sr! = pt

K=PH R +G D'
If we define

#-p'lmn (2. 60)

z=D'2 =D'Hx, +u-Hx *+tu (2.61)

F-7F,-GSR'H=F, -GR (2. 62)
and a new gain matrix as

R=p BTQ" (2.63)
then the estimation equation (2.43) becomes

%, s FE * F,x,* R(Z-BY)*+ G2 (2.64)
and the differential equation for P1 (2.50) reduces to

P, = Fp,+ P, FT - RQR" (2. 65)

We thus find a total elimination of the positive forcing term

and realize the effect of the process noise only through the reduction
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of the error in estimation of X1 this reduction being a function of the
inverse of Q. Hence for large expected values of process noise, little
gain in estimation accuracy is achieved, while if |Q| is very small,
then a large reduction is observed through this final term. We also

note that, for an observable system the estimation errors of the opti-

mal estimate will asymptotically approach zero.

2.3.2 Navigation with Perfect Measurements

As was suggested above, statistical navigation requires the
navigator to have available a nominal model of the vehicle dynamics
as well as a linear model describing random perturbations about the
nominal path. Both of these models were presented in our discussion
of deterministic navigation systems and are repeated here.

The nonlinear model of the vehicle equations of motion with

respect to an inertial frame of reference is expressed as

+
Zo isf g
(2.66)
r \4
=o —0
The random linear perturbations about this nominal path are obtained

from equation (2.17) as

v = + + + +
6X Fv 6\_/_ (Fr T) 6£ Gfgf Eg
ér = bv
da da bg
where F_ = —sf s F_ = —sf s r = =
v 5v r 6r Sr
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and where u. and Yy are white noise functions driving the specific
force and gravitational accelerations, respectively. We assume Ue

and ug to have zero means and covariance matrices defined as

elumudm)T] = Qut)s(t-r)

elu,®u MT] = Q) sit-r)

We also assume that ‘if and P—g are uncorrelated such that
Ty -
e [u,lt) u () l] =o0

In general, the matrices Qf and Qg will be positive semi-
definite at all times. For the present we will further restrict the
matrix Qf through the requirement that GfoGfT be positive definite
and hence invertible at all times. ¥ The effect of removing this re-
striction will be discussed later.

If we define a vector x to represent the linear state perturba-

= 6V
X SE

equation (2.17) can be written as

tions as

g=Fx+Gu ‘ (2.67)

3 : -
We will show later that if this condition is satisfied, the matrix
product GfoGf forms the measurement noise correlation

matrix, R.
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where

and

From the above definitions we can obtain the matrix Q to represent

the process noise covariance as

Q, O

O Qg

Q =

Measurements are received from the IMU concerning the speci-

fic force accelerations encountered by the vehicle. Linear perturba-
tions of these measurements with the assumption of a perfect IMU are

obtained from (2.15) as

y = %a (2. 68)

F 8v * F 6r + G
< —sf v = r -

£l

With the assumption that GfoGfT is non-singular, the measurement
vector y will contain independent white noise components without the

necessity of differentiation. Hence,

z =y = Hx * Du (2.69)

where



32

Since there are no state variables perfectly inferred from the meas-
urements, X, and M, (in the notation of section 2. 3.1) are undefined,

and M; =M = 1. The estimation of x(t) may be obtained from (2. 43)

as

I 2

= Fx * K(z-HX) (2.70)

where K = PHY + ¢s)R!

From (2.48) and (2.49), we find

T
Q.G
s = @t = |-E-f.
o
GfoGfT
gs = |-LAZf
o
i T . T
R=DQD G,Q, Gy
so that
T -1 I
= + ——-
K = PH' R [o]

The differential equation for P is obtained from (2. 50) as
P=FP+PF!l +GQGTY - KRKT

From the definitions of G, Q, R, and K above, the final two

terms in this equation may be obtained as
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T
(G.Q.G + Q) O
cacT - £ Qe Gy g
o o
KRKY = PH R 'up +PHT[I O] + [(I)]HP+ [(I)]R[I 0]
T
_ G.Q.G.T o
= PHTRIHP+P[HT0]+[S]P+ £Ef
o o
Thus,
. Q O -
P =Bp+pPBL+ | & -puTR 'up (2.71)
O O
where

e 5] d]

Through the above definition of K, it is possible to reduce the estima-

tion equation (2. 70) to

0

X = BX + {-=-] +PHT R (2 -HY) (2.72)

It is now possible to formulate the statistical navigation system
with the use of the nonlinear model (2. 66) and the linear estimation
model (2.72). The solution of equations (2. 66) with known initial con-
ditions allows the same result as is obtained through the deterministic
navigation scheme (2.12). The navigation accuracy is increased,
however, through simultaneous solution of equations (2.72) and (2.71)

with initial conditions

xt,) =0

P(t))

o) T elxtt)x )T
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and with known covariance matrices Qf and Qg' The optimal estimate

of position and velocity is then obtained as

vit) v
- + Xt

T(t) r ()

The statistical properties of the error resulting from this esti-

mation scheme are found directly through the covariance matrix
. - ~ ~ T
P(t) = e [elt) et)" ]

N v(t) V(t)
where e(t) = - 4
B r(t) r(t)

Let us now consider the assumption that the product Gfo GfT

remains non-singular at all times. In general, this assumption implies
that the number of independent noise elements which produce random
variations in the specific force accelerations is greater than or equal
to the number of independent components of the specific force accelera-
tion vector, agp Since we have assumed that the measurement system
observes the same a . as employed in the nominal model (2. 66), the
linear measurement perturbations y defined by equation (2. 68), then
also contain independent white noise elements.

If the assumption is not valid at any time, i.e., if GfoGfT
becomes positive semi-definite, then at least one element within the
measurement vector contains dependent (or zero) white noise, and

hence may be considered a perfect measurement. Recognizing this

fact, it is necessary to differentiate this measurement as discussed
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in section 2. 3.1 until an independent white noise element is obtained.
This element will necessarily be some linear combination of the noise
vector u

The newly defined measurement may be expressed by the

equation

z' = H'x ¥+ D'u

where D' Q D'T is non-singular.
| Since a linear combination of the elements of the state x is im-
plied by the perfect measurement(s), it will be necessary to reduce the
state estimation equations by the Bryson-Johansen method described in
the previous section and to employ the estimation equations (2.39) thru
(2.55).
It is now possible to state come general conclusions concerning
the statistical inertial navigation scheme presented here with the basic
assumption that the measurements y provide perfect duplication of the

variation in the entire specific force acceleration vector a i.e., that

—sf’
equation (2. 68) is representative of the variation in nominal information
received from the IMU. From (2.68), we find that the total process
noise derived from the specific force accelerations u, is perfectly in-
ferred from the measurements. Also, we note that the agr coefficient
matrices, Fv and Fr , which are included as coefficients in the linear
system through the matrix F in (2.67), are exactly duplicated in the
measurements (2. 68), Due to the perfect inference of these quantities

by the measurements, we find that the result of applying statistical

estimation theory to the linear system (2.67) is to remove these
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quantities from the system itself and to employ them only in the for-
mulation of the filter. This may be stated in a more formal manner
through the differential equation of the estimation error covariance

matrix, P, which may be written in general as
P:=BP*+PBL+ G QgG'T- K' R'K' L (2.73)

The linear coefficients, B', will contain only those elements
derived from linear perturbations in the non-specific force accelera-
tions. The positive forcing term, G' Qg G‘T, will, in like manner,
contain only linear combinations of the noise components driving the
non-specific force accelerations (if the matrix product GfoGfT is
singular, then'the elements of Eg accumulated through differentiation
of the perfect measurement(s) will be removed from this forcing term
and included in the R' matrix).

The final term K' R' K' T

is a positive semi-definite matrix
which will tend to reduce the mean squared estimation errors. The
covariance matrix R' as well as the gains K' will contain all of the ele-
ments of Qf plus a linear combination of the elements of Qg obtained
through differentiation of the measurements. The matrix K! will con-
tain the coefficient matrices, FV and Fr , as well as other terms which
may be obtained from the necessity of measurement differentiation.

Another significant conclusion can be derived from study of the

optimal filter gains defined by (2.36) as

K = (PHY + GS)R™}

We have already noted the effect of the cross-correlation term GS R-1
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in eliminating specific force acceleration dependent coefficients and
noise components from the matrix F and the positive forcing term
GQ GT. The remainder of the filter gains, consisting of the product
P HT R-l, is thus employed to reduce the magnitude of the navigation
errors. The physical basis of this reduction is that the navigator is
able to discern some information concerning the variables being esti-
mated from the correlation of the measurements with variations in
these variables. This correlation is found directly through the matrix
H, or more basically through the partial derivative matrices Fv and
Fr' Hence we may conclude that if the specific forces acting on the
vehicle are in no way dependent upon the position and velocity of the
vehicle, then the matrix H and, in turn, the gain K will be identically
zero and no advantage is realized in the statistical filtering navigation

over the deterministic navigation scheme.

2.3.3 Inclusion of Measurement Errors

Thus far, we have considered optimal statistical navigation for
perfect inertial measurements. We now study the effects of including
the errors associated with the IMU measurements.

In section 2.1, it was pointed out that sufficient evidence has
been found, through studies of IMU systems, to validate the assumption
of random constant error coefficients in the IMU over short periods of
time. With this assumption, it was possible to formulate the errors in

sensed acceleration by the IMU as

6 a = Eb
—-—m -

o

i
»)
o

~ Where
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and where the matrices E and D0 are defined by equations (2. 8) and
(2.9). The vector b is a random vector defined by (2. 6) containing the
gyro drift components and the gyro and accelerometer error coefficients.
It is assumed to have a mean value of 0 and a covariance matrix Pb(t)
defined by (2.10). The effect of including these measurement errors
into the linear system is seen through adding 6 2. to the measurements

y (2.68) to give

= + = + +
y 6af 6am Fvéy_ Fréz G

(U TED (2.74)

In order to include the measurement errors in the navigation
scheme, it would be necessary to include the elements of b as addi-
tional state variables to be estimated. To realize this, we would define

an augmented state vector X as

I8 I

o)
x = {s
b

From (2.9) and (2.17) we obtain the differential equation for X as

X=Fx+Gu
where
§ +
FV Fr r O Gf I
F= 11 o) o) G = |o o
LO (@] Do O O
u
and u = —f
u
| Zg
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If we assume GfoGfT to be non-singular, the measurements

Z may be defined as

=HX + Du (2.75)

I

where
H = [F F E] D = [G o]
v r f

The optimal gain for this augmented system is now obtained as

R = (FHET + &s)r!
5T -1 I
=PH™ R + @)
@)
where S =QDT
~ & T
and P=el(X-X)(X-X)"]

X=FX+R(z-HX)
or as
o~ ~ o 4 T =1 o~ o~
X = BX + 0| +* PH R (z-HX) (2.76)
X-BX+ 0 z-HX

and the differential equation for P would be derived as

Q.0 O
To-1oa g
RHP + |0 o0 o] (2.77)
O 0O

P=-BF+PE"- PH
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where

-E

B} T
R = G;Q;Gy

o O

(O I
D
o

Estimation of the entire augmented vector X would indeed pro-
vide us with the optimal navigation system in the sense of maximum
accuracy in estimation. Such a navigation system would be employing
every available fragment of information concerning the vehicle dynamics
and measurement system and the random noise components affecting
them.

As noted in section 2.1, however, the 1_3_ vector could contain
as many as 81 elements. Adding to this the six-dimensional x vector,
the navigator would conceivably be called upon to estimate up to 87
individual state variable variations. The estimate of this state would,
in turn, require the simultaneous integration of a total of 7743 variables
according to equations (2.66), (2.9), (2. 76), and (2.77). This number
could be reduced considerably due to the fact that many of the error
coefficients within the b vector have an insignificant effect upon the
actual IMU errors and thus could be eliminated. But, even if the size
of the b vector were reduced by such elimination to half its size, the
navigator would still be burdened with a large quantity of numerical
integration.

It is because of this insurmountable computation time that the
designer of a statistical navigation system must be satisfied with a sub-
optimal system, that is, one which does not utilize all of the information

available and hence does not allow a true minimum error in estimation.
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The size of the state vector to be estimated and employed in the navi-
gation system will be determined through the individual designer's
criteria in considering the tradeoffs between navigation accuracy and
system complexity.

The errors introduced by not estimating any elements of the
b vector may be found by adding the measurement error equations de-
veloped in section 2.2 for the deterministic system to the equation for
covariance of the estimation errors determined for the filtering system.
The covariance matrix of the actual estimation errors would then be

found as the solution of the equation

T

P=FP +PFL +GQaGTY - KRK?Y

T T

+ E Peb + Peb E! (2.78)

where the matrix K is the same as employed in the estimation for

perfect measurements and Peb is obtained from solution of equations

(2.28) and (2. 29).

2.4 Comparison of Deterministic and

Statistical Navigation Schemes

There are several criteria upon which we may base a compar-
ison of the two inertial navigation schemes presented here. Among
these, the most important criteria would be navigation accuracy and
system practicability.

A quantitative comparison of navigation accuracy could be ob-
tained through solution of the error covariance equations associated

with each scheme with given initial conditions along a specified nominal
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path. The differential equation for the covariance matrix correspond-
ing to the deterministic navigation scheme is given in equation (2. 27)

as

= - = =T T T T
= + + + +
P BP PB GQgG E'Peb PebE' (2.79)

The first two terms in this equation show the dependence of the errors
upon the initial errors and upon the non-specific force variations along
the path while the third term reveals the positive linear dependence upon
white noise in the non-specific force accelerations. The measurement
errors are added through the final two terms.

The form of the error covariance differential equation for the
statistical navigation scheme will depend upon the number of state vari-
ables to be estimated and the characteristics of the process noise driving
the specific force acceleration perturbations. We will assume for the
present that the statistical navigator assumes perfect measurements and
that the matrix product GfoGfT is non-singular. Then the navigation
errors for this navigator may be obtained from equations (2.78) and

(2.71) as

+P,E - PH RIHP (2. 80)

We note that the first five terms in (2. 80) are identical to those in (2.79)
if P is replaced by P. The final term in (2. 80) is a positive semi-definite

quantity which is subtracted from the differential equation for P. Thus,
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we are able to show a clear reduction of navigation errors through the
statistical navigation scheme if the H matrix is not identically zero. It
can also be shown through study of equation (2. 77) that the only effect

of estimating some of the elements of the measurement error vector b
in addition to the position and velocity variations would be to increase

the size of the filter term and thus achieve even better accuracy.

The practicability of the statistical navigation scheme would
have to be investigated in light of both the gain in accuracy over the
deterministic scheme and the availability of on-board computer time
and storage capacity. As noted above, no gain in navigation accuracy
can be realized if the matrix H, describing the correlation between
the specific force accelerations and the parameters being estimated,
is zero. Such an effect is observed in attempting to navigate under the
accelerating forces of propulsive thrust. The magnitude and direction
of the thrust vector are controlled through commands from the guidance
system and are independent of the actual position and velocity of the
vehicle. Because of this independence, it would be impossible to
improve the estimate of position and velocity obtained from the deter-
ministic inertial navigation system through the statistical estimation
techniques (using acceleration measurement data only) without estimating
elements of the measurement error coefficients, b.

Aerodynamic forces, however, are found to depend upon both
the position and relative velocity of the vehicle. Due to this dependence,
the navigation accuracy would be improved with the use of statistical

navigation.
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Computer requirements for the statistical navigation scheme
could be evaluated from consideration of the estimation equations
presented in section 2.3. For estimation of n state variables, it is
apparent that the solution of n(n+t1) differential equations is required
in addition to the integration of the n nominal equations necessary in
the deterministic scheme. This additional burden on the computer may
increase numerical computation times to exceed the real time limit. If
a predetermined nominal path is to be followed, it may be permissible
to store a large portion of information corresponding to this nominal
path. This would eliminate real time integration of the covariance
matrix P and computation of the filter K but only through an increased
requirement for storage capacity.

A more detailed comparison of the two navigation schemes is

presented in the re-entry application which follows.
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CHAPTER III

DEVELOPMENT OF STATISTICAL INERTIAL
NAVIGATION FOR APOLLO RE-ENTRY

The final phase of the Apollo manned lunar landing mission will
be the re-entry of the command module through the earth's atmosphere
to a predetermined landing site. Prior to entering the atmosphere, the
command module will be directed into a safe entry corridor and aligned
to an aerodynamically stable attitude which allows a small lifting force
on the vehicle. A limited amount of re-entry path control is achieved
by rolling the vehicle to change the direction of this lift force. Upon
entering the atmosphere, the guidance system must steer the vehicle
to the desired landing point with high accuracy while avoiding excessive
accelerations and possible skip out with supercircular velocity. If the
prescribed landing conditions require a long range to be achieved by the
vehicle after entry, it will usually be necessary to perform a controlled
skip out of the atmosphere through a sub-orbital ballistic flight as shown
in Figure 3.1. Lickly, et.al. (21) show that the errors in terminal range
are highly sensitive to errors in guiding the vehicle during initialization
of this skip maneuver.

Guidance accuracy can be no greater than the accuracy of the
navigation information supplied to the guidance system. With initial
conditions of the vehicle position and velocity obtained from the mid-

course navigator prior to re-entry, the acceleration data obtained
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from an IMU during re-entry could be used to determine the present
state of the vehicle. With the conventional deterministic integration
of these accelerations, any uncertainties in the initial values received
from the midcourse system will be carried through the entire re-entry
phase. Since the aerodynamic forces acting on the vehicle during re-
entry are known to depend on the velocity and the atmospheric density,
it would be possible to reduce the effects of these initial condition
errors with the incorporation of statistical estimation theory into the
navigation scheme.

This chapter will employ the statistical estimation theory
developed in Chapter II in the design of an inertial navigation system
for the re-entry portion of the Apollo mission. The three dimensional
dynamics of the Apollo command module will be presented and subse-
quently simplified to two dimensional motion in an equatorial plane
about a rotating earth. Random variations about this nominal path
will then be used with appropriate random process noise to define the

optimal statistical filter for the assumed two dimensional model.

3.1 Description of Apollo Re-entry Vehicle

The Apollo command module is a conical capsule as shown in
Figure 3.2. Its shape and center of gravity provide an aerodynamic
trim orientation with the heat shield forward and one side nearly
parallel to the wind direction. Control jets are provided to damp out
oscillations in pitch and yaw and thus maintain stability in this trim
attitude. The angle of attack provided by this orientation is 22° and

creates a ratio of lift to drag of 0.3. Roll of the vehicle about the
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velocity direction is controlled by on-off operation of hypergolic

thrusters to allow for desired orientation of the lift force.

3.2 Vehicle Dynamics

With the assumption that the motion of the vehicle may be ade-
quately described as that of point mass about a spherical rotating earth,
we may write the vehicle equations of motion in the rotating spherical

coordinate frame shown in Figure 3.3 as

. ngsinY 2
V=1 - 22+ (R +h)0%cos\ (siny cos \ -
V. (R th) €
cos Y sin § sin \)
2 ngcosy
! vy = £+ V cos ¥y _ °co’'e

+ 2QV cos § cos A
. Y (R, *h) (R, *h)"

+ (Re + h) QZ cos A (cos y cos X + sin y sin ¥ sin ))

. 2
Vcosy | = fll! A coszycoswtank

+
(Rg *h)
+ 2QV (sin ¥ sin y cos A - sin \ cos Y)
- (Re +h) Q2 cos A cos § sin A

h = Vsiny (3.1)

¥ = V cos v sin ¥
(Re+h)

= Vcosycosl
(Re +h) cos A
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Figure 3.3

Rotating Coordinate System




51

where
i V = velocity relative to rotating earth
y = flight path angle measured positive above the horizon
¥ = azimuth angle
h = altitude
A = latitude

® = longitude

Re = radius of earth
8o ~ gravitational acceleration at surface of earth
Q0 = earth rotation rate

and where fv’ f , and f‘lf are the aerodynamic specific forces acting

-Y)
on the vehicle. In terms of the roll angle, ¢, and the sideslip angle,

{ , these forces may be defined as

AV °

fv = S (CY sin - CD cos £) (3.2)
pAcVaZ

fY = T(CL cos ¢ - CDsin¢sinC - CYsind>cos g)

_ pAcVaZ . + + .
fq, e (CD cos ¢sin € CY cos ¢cos € CL sin ¢)
where

p = atmospheric density

AC = cross-sectional area of vehicle

Va = relative velocity of vehicle with respect

to the surrounding air

and where CL’ C and C,, are, respectively, the lift, drag, and

D’ Y
yaw coefficients,
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In order to maintain a reasonably simplified analysis of the
navigation system, we will assume that the vehicle moves in an equa-
torial plane about the earth and neglect all motions of the vehicle out

of this plane. With this assumption, we obtain

and i:X=O

and the two dimensional equations of motion reduce to

2 .
. goRe sin vy 2
vV = fV - —_— + (Re+h)Q sinY
(R_ *h)
e
f ngcosY (R +h)chosY
\-(zn_Y__FVcosY_oe 2+2Q.+ e
V. (R_+h) V(R *h) v
e e
h = Vsiny
é=VcosY
+
(R* h)

The lift, drag, and yaw coefficients of the vehicle will, in
general, be nonlinear functions of the angle of attack, @, the sideslip
angle, {, the Mach number, the Reynolds number, and the angular
rates of the vehicle. At the high supersonic velocities encountered
during re-entry, however, these coefficients may be assumed dependent
only on the angle of attack and the sideslip angle. We thus approximate

the aerodynamic coefficients by polynomial functions of @ and { as
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3
= +

CL CLoa CLla

C. =C. +C_.a®+cC_t? (3.3)

D Do D1 D2 :
) 3
= +

Cy = Cyf * Cyit

If the design aerodynamic trim attitude is maintained, then

=0, aF“ 220, CY = 0, and the nominal specific forces fV and fY

may be written as

2
e - ¢ - pAcVa CLcosq>

3.4
v 2m Y 2m ( )

Without knowledge of the wind conditions at the altitudes to be
considered (above 100, 000 feet), we neglect them and assume that the

- atmosphere rotates with the earth so that

We will also approximate the atmospheric density as an expo-

nential function of altitude as

p = poe_Bh (3.5)

where Po and B are constants.

With these considerations, the equations of motion become

. o e Phy c,v? g R “siny ,
v = -_9 ¢ - > + (Re+h)Q sin vy
2m (R_+h)
e
pe_BhAC V cos ¢ ngcosy
y = _9© c L + Vcosy  ®o’e
2m (R_* h) vV (R_+h)*

(R, *h) 0% cos v

+ 20 +
v (3.6)




54

.
1

V sin ¥y

- Vcosy
+
(R h)

3.3 Random Error Sources

Errors in navigating with this model would be derived from the
assumptions intentionally employed to reduce the complexity of the
model, from uncertainties in the constant parameters and initial con-
ditions, and from random disturbances which could be described only
through their statistical characteristics. In this study, we neglect
deterministic variations which could be extracted from a more sophis-
ticated model and consider only the variations due to unpredictable
random disturbances.

The effectiveness of any statistical estimation scheme is
based upon the ability to describe the statistical properties of random
disturbances affecting the physical process and the measurements. In
the present study we have assumed the inertial measurement system
to contain no high frequency random noise. Therefore the random
disturbances in the measurements arise solely from the process noise
affecting the vehicle dynamics. If this process noise can be modeled
with sufficient white noise to produce independent white noise elements
in the measurements, then the Kalman filtering theory may be employed
directly in describing an optimal filter. If, on the other hand, the
specific force accelerations are not perturbed by independent white
noise elements, then recognition must be made of the fact that some

perfect knowledge of the state of the vehicle is obtained from the
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measurements. In this case, it was found in Chapter II that the statis-
tical filter may be defined for a reduced system, possibly utilizing
derivatives of the perfect measurements.

Since the elements of process noise play such an important role
in the design of the statistical filter, careful consideration should be
afforded the modeling of their statistical properties.

The primary random disturbances affecting the aerodynamic
forces during re-entry could be attributed to

1. Variations in the atmospheric density.

2. Random winds.

3. Unsteady motions of the vehicle about the

aerodynamic trim attitude.

4. Effects of control implementation errors.

5. Disturbances in the aerodynamic forces due to

unsteady flow around the vehicle and to the effects
of mass ablation from the heat shield.

Since no supercircular re-entry flights of an Apollo type vehicle
have been made, a statistical analysis of these disturbances must be
conjectured from available ground test data and intuitive reasoning.
Each of the above disturbances are considered both qualitatively and
quantitatively. The quantitative comparison is obtained through exami-
nation of the effect of each disturbance on the variations in the aerody-
namic force accelerations along the nominal re-entry trajectory chosen .

for analysis in Chapter IV,

3.3.1 Atmospheric Density Variations

Some studies of atmospheric density variations have been made
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with limited data and theoretical model approximations. Reference
(22) shows these variations to depend on season, latitude, and altitude.

(23)

Cole and Kantor show approximate extreme values of the variations
between 30 and 90 kilometers as obtained through the assumption that
the atmosphere remains in hydrostatic equilibrium. The maximum
values of daily variations in density (with 95 per cent certainty) at a
latitude of 15 degrees north are shown by this study to depend on alti-
tude and are represented as percentage of nominal density in Figure
3.4 on page 60.

From these findings, we could attempt a crude model of the
statistical characteristics of the density variations. We first assume
that any density perturbation from standard would be highly correlated
in time so that at a given position in the upper atmosphere it could be
considered as a random constant. We would expect different values of
the random variations as we change altitude, however. Since the un-
certainty in density would not change rapidly with altitude, we could not
assume it to be white noise, but could possibly construct a shaping

filter to represent the correlation with altitude as

d _ 1 1
_ 8p = - 5p + w_ (h) (3.7)
| dn| By B e

where 6p is the uncertainty in density, hp is the correlation altitude

and where wp (h) is white noise in altitude with
e [wp h)y]l =0

e [wp(h) wp(h') ] = Qi (h) 6 (h-h')
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The absolute value in (3.7) is necessary to insure stability of
the shaping filter.

Since the model of the vehicle dynamics employs time as the
independent variable, it will be necessary to transform the density
variation model to one which is time dependent. This can be done by
multiplying equation (3.7) by the altitude rate h to obtain
b
| dh| h h,

Y, (h) (3.9)

With a linearity assumption, we may also obtain

5(t-T) = |h| & (h-h")

Then treating the entire forcing function _ﬁfil_ W, (h) as white noise in
P

time, up (t), we obtain

6{3 = - th
p

o) + t
P up()

where

e [up(t)] =0

e [up(t) up(T)] = qp(t) 8(t-7)

With essentially no knowledge of the propagation of density
perturbations at altitudes above 100, 000 feet, we will assume that the
correlation altitude, hp , may be represented as the inverse of the

constant 3 defined by (3. 5), to obtain

§p = -B |n| sp * u, (3.10)
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The forced (or particular) solution to (3.10) may be written as

5p(t) = J‘ e-B|h| (t-T)up(T)dT

-0

and hence the variance of 8p as

¢ ¢ _ .
ol = sot)? = [ ar, [ ar, o-Blbl (t-mp) -BIB[(t-Ty) 6, ()6 (r,-T))

-0
On a quasi-stationary basis, we treat h and qp as constants to allow
integration of this function. Hence

o]

2 - o~2Bln| -1

% % )
o &
Then letting 7T =t-T, and ar = -dr,, we obtain
cpz ) f .-28n|7 - 9 -28|n|r
. 2| n|
o
q
02 = ___p.
* 2pln

With these simplifying assumptions, we can now express q, as

- o P
a, ZBIhlffp

According to Reference (23) the standard deviation Gp of the

density variation could be represented as a percentage of nominal

density as
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op(h) = OF'J (h) p

where 05 (h) is represented by a curve such as shown in Figure 3. 4.
For simplification we assume cé(h) to be a linear function of altitude
so that

cp(h) = (k1+k2h)p (3.11)

where kl and k2 are constants with values

- .2
ky = 5
_6'
_ 10 -1
ky, = —5— ft

to give the linear curve shown in Figure 3.4. The result of integrating
the variance of 6p along a nominal trajectory from an initial RMS

uncertainty 60(0) of 2x10-ll slug/ft3 (or approximately 0.2p) is also

shown in Figure 3.4. The predominant increase in % occurs Vduring

the skip maneuver while h is positive. The results obtained would
suggest that the model is not truly representative of the atmospheric
density variations. However, since the intent here is not to develop a
highly sophisticated model but rather to illustrate the method of including
such a model in the statistical navigation system, the above model will
be accepted as adequate.

The effect of a small variation in density, 6p, on the aero-

dynamic force accelerations may be evaluated as

fV
f

5f = _Y &
y 7 °F
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Expressing these variations as a percentage of the nominal

values, f and f , we have
v Y

&f _ &p

T

These variations are shown in Figure 3.5 as a function of time along

the nominal trajectory.

3.3.2 Random Wind Velocities

A glance at Reference (22) will reveal that the structure of
atmospheric winds is indeed complex. The constantly changing pres-
sure and temperature patterns throughout the atmosphere cause varia-
tions between two observations of wind velocities which increase with
the intervals of both space and time between the observations. The rate
of increase of wind changes between observations will, in turn, depend
upon season, latitude, longitude, and altitude. Although very scant data
is available concerning wind variations above 100, 000 feet, some evi-
dence has been shown of large day-to-day variations,of tidal variations
within the period of a day, of eddies with 100 minute life span, and of
small-scale turbulence with 10 to 30 second life span. Until more
quantitative data is made available through analysis of rocket flights
in the upper atmosphere, it will be impossible to create an accurate
model of the wind variations. It would be safe to assume, however,
that random variations in winds are present and could be modeled as
some form of colored noise correlated with both time and distance.

For the purpose of comparison, we will investigate the effects
of both down-range and cross-winds on the aerodynamic forces along

the nominal trajectory chosen for study.
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Down range winds, Wy, may be considered as a perturbation in

the velocity, v, which affects the aerodynamic forces as

ZfV
o, T < Vg4
2f

Assuming that the cross winds, W act in the direction of
positive lift in the plane of motion, their effect on the aerodynamic

forces may be written as

f
5f = -—Y w
v v C
fV
6fY - 7 WC

The effect of constant wind components of 10 fps acting along
the trajectory on the aerodynamic force accelerations are shown in
Figure 3.6 as a percentage of the aerodynamic accelerations. We note
the greatest effect of winds to be the perturbation of fY due to the cross
winds. This effect is notable as the in-plane lift component, fY , ap-

proaches zero.

3.3.3 Vehicle Oscillations

As discussed in section 3.1, an on-off type control system will
be employed on the Apollo command module to maintain the aerodynam-
ically stable attitude during re-entry. Due to random aerodynamic
torques about this stable attitude and to dead zones in the operation of
the stabilization system, some random oscillations will be experienced

by the vehicle in the pitch and yaw directions. Approximate data
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obtained from R. Morth(24)

show these oscillations to have an average
frequency of one cycle per second with an amplitude of one degree. In
order to model these oscillations, we will treat them as white noise

which, when passed through a one cycle per second band filter, produces

an equivalent RMS value of

1 1/2

RMS (6a) = || (sin (2mt) )% at = Y 2 gegree

o

The variation in angle of attack @ and sideslip angle { would

then be written as

da(t) = ua(t)
6 =
where
e [ua(t)] = 0, & [uc(t)] =0
and
elu,(t)u,r)] = q,lt) 8(t-T)
= S(t-T
8[uc(t)uc(7'):| qt(t) (t-1)
With u_ and u, treated as white noise with correlation times
a e \/__
of 1 second and RMS values of g degree, we obtain

2

- 2
q, ° e = 2(1) (g) = 1 deg. "~ sec.
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We assume the pitch and yaw oscillations to be independent so

that

S[ua(t) uC(T)] =0

These noise sources would have a linear effect on variations in

the aerodynamic coefficients which could be obtained from (3. 3) as

. +
6CD 2 CDl au CDZ uc
5C. = (C. . + 3C, .a@%) u
L LO L1 a
5C = (C + 3C CZ) u
Y YO Y1 C

Through linearization of (3. 2) and using the nominal values of

=0, aF 22°, and CY = 0, we obtain

2C ., af
®f), = - ——-———21 v, u,
D
2
+
i (CLO 3CL1a )fY
(GfY)a c u,
L
(GfV)c =0
(C~L t Cy,)
- D YO
5 = .
( fY)C oy tan ¢ quC

For the particular vehicle described in Chapter IV, the effects

of these variations on fV and fY are defined as
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Cf),
—fv— = . 9007 ua
(6£,)
vie
fY 1.7036 u,
(8£,)
v¢ = -6.388tanf u
£ g

These effects are shown in Figure 3.7 along the nominal trajec-
tory. We note the effect of yaw oscillations to be similar to the effect

of cross winds in the plane of motion shown in Figure 3. 6.

3.3.4 Control Implementation Errors

Since no aerodynamic moments are expected about the vehicle
roll axis, any variation in the roll angle would be derived from random
errors in the control system. In such an on-off type control system,
the major errors are introduced through limit cycling within the roll
control dead zone. We will assume well designed guidance and control
systems such that the magnitude of these errors produce a negligible
effect upon the aerodynamic forces.

It should be noted here that, in an actual system, the vehicle
attitude, e.g., the angles @, {, and ¢, would be estimated by the
navigation system from IMU angular measurements. Since we have
assumed perfect measurements and have not considered estimation
of the vehicle attitude, we must assume that the navigation system has

perfect knowledge of these angles except for high frequency variations.
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3.3.5 Effects of Unsteady Flow and Mass Ablation

Among the random disturbances considered to affect the aero-
dynamic forces, probably the least is known about variations due to

unsteady flow and mass ablation. Recent studies(24) (25) (26)

have
shown a marked decrease in the nominal aerodynamic coefficients
due to viscous effects from asymmetric conical bodies and to local
perturbations of the boundary layer and cross flow from the injection
of ablative mass into the flow. The ablation was also shown in (26)
to significantly change the aerodynamic pitching moment and damping
coefficients. However, insufficient data is available at the present
time to estimate any statistical characteristics of random variations
in the aerodynamic forces or coefficients due to these effects.
Although it would seem reasonable to assume some additive white

noise components in the aerodynamic coefficient variations resulting

from these effects, such assumption should be made with extreme caution

until some substantiating quantitative data is made available.

3.3.6 Summarz

From the considerations above, it would be possible to assume
that the primary sources of random disturbances in the aerodynamic
forces stem from atmospheric density variations and vehicle oscillations
in pitch and yaw. Although the random wind velocities, control imple -
mentation errors and mass ablation would play some role in creating
random disturbances, such effects will be considered of secondary
nature at the present time.

Of the three independent white noise sources considered at the

present time, two enter directly into the specific force accelerations.
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The third, u, also affects the aerodynamic force accelerations, but
indirectly through the shaping filter for the assumed colored noise
variation in atmospheric density. We define a noise vector u,to in-

clude the two noise elements directly affecting the specific force

accelerations as

u = (3.14)
e

From the statistical considerations of the independent elements in U,

we may write

e [gf] =0
and
e lu ) u, ()] = Qft)b(t-r) (3.15)
where
q 0
Q; * *

3.4 Dynamics of State Variations

From consideration of the individual sources of random varia-
tions in the state variables, it is possible to construct linear dynamic

equations of motion for the total state variations, 5V, &y, dh, and 86,

defined as

8v. = Vv -V
o)

5y = -

Y Y Yo

h = h - h
o

56 = B - B
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where the subscript o refers to the nominal values‘obtained from the
solution of equations (3.6). Since the variation in atmospheric density,
6p , is determined through the differential equation (3.12), we will
consider the density p as an additional state variable in our system

of equations with its differential equation written as

p = -Bph = -BpVsiny

Combining the five state variables to be considered into a

vector, s, defined as

|0
It
T o < <

the equations describing the nominal path of the vehicle may now be

written as
. a,
s = - + b (3. 16)
-0 0 -0

where a, is the specific force acceleration vector:

a
= v =
Y

with £ and fY defined by equation (3.2), and where b  includes the

remaining non-specific force terms as
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b
\%
-0 ) bh
by
bp
with
2 .
goRe sin vy >
b = ———T + (Re+h)Q SinY
M (R_ *h)
e
ngcosY (R +h)02cosy
b=Vcosy_oe + 20 + €
Y (R_*h) V(R_+h) '
e e
b, = Vsiny (3.17)
b. = V cos ¥
8
(R_th)
e
bp = -Bp Vsiny

The true state vector s is found as the sum of the nominal state

and random variations from the nominal, & s,

s(t) = s (t) + 8s(t)

where & s will, in turn, be derived from variations in the functions a

and b as
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Perturbations in the specific force accelerations will be a
function of variations in the state variables and of the white noise

sources considered in section 3.3. From linearization of (3.16) we

obtain
pA V2
= = 26V - -+ 6p <+ C
6aV 6fV aV (—v_ Béh _p—> 2m l:_( CY cos C
+ - + si ]
CD s1nC)uC sinl 6 CY cos 6 CDJ
f pPA V
- _ 5V bp c
5a. = 65X = (_._ S Bsn +2P) + [ 5
a, v a, \ v Béh 5 > 5 cos ¢ CL

- sin ¢sin‘C 5 CD - sin ¢ cos L CY

"'(CY sin ¢sin{ - CD sin¢cos§)uc:|

Incorporating the variations in the aerodynamic coefficients from (3.13)

and noting that the nominal value of { , and hence that of CY, is zero,
we obtain
2
N 2 sn+ Loo) PACY
1 1 PAV
54 = (_ 5§V -85h+ L6 > + ‘:_ '
a, a, \ ¥ vV -8 i p - CD sin ¢u§

2
+ + - :
(CLo 3 CLlar )ua cos ¢ CYo ue sin ¢]
(3.18)

Employing the vector notation as defined above, the total variation in

the specific force acceleration may be written as

5a = Abs * Gpug (3.19)



74

where the noise vector, u., is defined by (3.14) and the matrices A

and Gf are obtained from the above linear equations as
-Za a 7]
v A4
A 0 - —
v Pa, 0
A< (3. 20)
a a
Y Y
-~ 0 - 0 A
LV BaY p
. pACV 2V CDla 0
" m (C, +3C, a%) cos ¢- (Cy*Cy)sind
Lo L1 D “Yo

(3.21)

In the same manner, we obtain variations in the non-specific

force terms, 8b, as

6b = B és + uy (3.22)
where
0
0
u = 0
“p 0
Yo

and the matrix B is obtained from linearization of equations (3.17) as

0 b, b, 0 0 T
by Pap by 00
BT db,, b, 0 0 o0 (3.23)
by byp by 00
L 0 0 o 0 b55-




where

12

13

21

22

23

31

32

41

42

43

55
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2
L _g_OE(_e_Z + (R +h)Qz]cosY
+ e
(Re h)
2
2g R
[ -0 e + 0%] siny
(R_*h)°
2
1 goRe (Re+ h) QZ
( * 2 L 2 T2 1 cos v
(Re + h) \% (Re+ h) v
2
: v . EoRe (R, *h) 0% :
- —_— - sin vy
(Re+h) V(Re+ h) \%
2
[ - vV o+ _______ngoRe + 93] cos Y
(Re"’h) V(Re"'h) A\
sin v
V cos ¥
cos Y
'('R‘e' +h)
V sin ¥
(Re +h)
V cos vy
(R, h)
- B |n| (from equation (3.10) )
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Upon combining (3.19) and (3.22), we obtain the linear differen-

tial equation for the state variations 6 s as
6s = Fés + Gu (3.24)

where

and where O is a 3x2 null matrix.

3.5 Inertial Measurement System

The proposed measurement system for the Apollo re-entry
vehicle is an inertial measurement unit consisting of three single de-
gree of freedom gyros and three accelerometers. The orientation of
the accelerometer input axes, Xa’ Ya’ Za’ with respect to an inertial
reference frame, XI’ YI’ ZI’ maintained by the stable platform is
shown in Figure 3.8. The inertial reference frame is established at
the state of re-entry (arbitrarily set at an altitude of 400, 000 feet) with

the X, axis directed radially away from the earth, the ZI axis in the

I
plane of motion of the vehicle normal to the XI axis, and the YI axis

completing the right hand triad.
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XI
Inertial Reference Frame
—
ZI
Qx
a
1
Stable Platform
é Reference Frame
a
Z
a
Figure 3.8

Stable Platform Orientation
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Since planar motion of the vehicle is considered in the present
analysis, there will be accelerations only in the XI and ZI directions
as sensed by the (-) Za and Xa accelerometers, respectively. We will
thus assume measurements to be received from these two accelerom-
eters only.

The acceleration information, a received from the IMU in
these inertial coordinates may be converted to the specific force accel-

erations in the rotating earth-centered coordinates employed in our

model by the transformation (see Figure 3. 3)

a = Ta (3. 25)
-m =

where
cosX Vsinx

-sin ¥ V cos X

and X =6 t+Qt-vy .
we note that aY does not represent true specific force acceleration
but was defined in (3.16) as fY/V; hence V appears in T to transform
to measured acceleration.

With the assumption that the measured accelerations 24 contain
no errors from the IMU, any variations in L would be the direct re-
sult of perturbations in the state variables and in the specific force

accelerations and could be written as

= + 6 = -+ 5
Em ia—mo E‘-I'I'l T(g’-o) E0 am

where
a = T a + T a .26
o m 5 hal¥) (—S o) 6— (3 )
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Assuming that 6 T is the result of small perturbations in the state

variables we obtain

-sinX V cos ¥ 0 sin¥x
8T = (66 - 8y) + 5V
-cos X - Vsin¥ 0 cos ¥
P remultiplication of each term by T T-1 = I, where
-1 cos X -sin¥x
T = sin X cos X (3. 26a)
V A%
yields
0 Vv 0 0
8T = T 1 (66 -6y) + T 5V
-y O 0 1/Vv

Subsequent post-multiplication by 2, then gives

VaY 0

§Ta_ = T a (66 - 8v) *+ | _ 5V
v Y
v ~

This result can now be written as a linear combination of the state varia-

tions &s, as

6Tg = TZGE (3.27)
where
- 0 0
) 0 VaY VaY
Z = aY av 0 _av 0
v ~ v
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With the result of the variation in specific force acceleration,
ba given by equation (3.19), the total variation in a, maynow be
written as

= + +
6am T(Z t A) 6§ TGfl_lf

In order to remove the nominal effects of the coordinate rotation, we
will transform these variations to the navigating coordinate frame and

define the measurements to be considered by the navigation system as

= = + +
Y T 6am (Z + A) 6§_ Gfo (3.28)

3.6 Derivation of Statistical Filter

Having defined the equations describing the random linear var-
iations in the state of the vehicle and in the inertial measurements, it
is now possible to employ the results of section 2. 3.2 in developing a
statistical filter for obtaining a best estimate of the state variables.

The linear set of equations describing the random state varia-

tions is obtained from (3. 24) as

6é=F6§+GE

Linear variations in the measurements are shown in equation
(3.28) as

= + +
y (Z + A)bs Gfl_lf

where the matrices Z, A, and Gf are defined by equations (3. 27),
(3.20), and (3.21), respectively.

As pointed out in Chapter II, a major requirement to the use of

statistical estimation theory is that the measurement variations contain
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independent white noise elements. We can investigate this independence

through evaluation of the matrix product GfoGfT

GeQeGy™ =

2 2 H
r [PAV (c;V)7q, ; c ¢,V cos dq,
2m

! 2 . 2
¢,¢,V cos ¢q, E (c2 cos ¢) qa+ (03 sin ¢) %Y
1

(3.29)

where the constants, Cl’ Css and c3 are defined as

c1 = 2a CDl
_ 2
= +

¢y T Cppo T 3G, @
= +

3 Cp Cyo

The determinant of GfoGfT can be written as

4
PA V
T| _ c 2 2 2 .2
IGfoGf | ( 5 > A% c, c¢; sin ¢qan

If the vehicle is moving with a finite velocity through the atmos-
phere, this result reveals a singularity only when the sine of the roll
angle ¢ passes through zero. Hence the measurements will contain
independent white noise elements except when this condition is reached.
During the time that sin ¢ is equal to zero some linear combination of
the measurements could be found which contains no noise and hence
produces a perfect estimate of some combination of the state variations.
Since the roll angle is allowed to assume any value set by the control
system, it would be necessary for the navigation system to contain two

separate filters to accommodate these two situations. We now derive
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‘these two filters. For convenience we will refer to filter A and filter

B for use when sin ¢ # 0 and when sin ¢ = 0, respectively.

3.6.1 Derivation of Filter A (sin ¢ # 0)

When the attitude of the vehicle is such that sin ¢ is not zero,
the measurements y will contain independent white noise elements,

and we can define (in the notation of section 2. 3. 2)

IN

=H6§_+DE

where Zt+tA (3.30)

H
D = [G;0]
and where u is the total noise vector defined in (3. 24).

From the development in Chapter II, it is found that the best

estimate of the variations, §s, may be determined from the filter

(2.72) as

5’_5_ = BéE + [_é.:l + K(z -Hég) (3-31)

where

N R R 5 B - P

A
v
s
s

R = GfoGf

and where the estimation error covariance matrix is found as the

solution to

o o
T

2 9%

P-=Bp +pPBT + _KRK (3.33)
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with initial conditions

ds(t) = 0

and
} T
P(t) = elés(t)ss ()] (3.34)

It is now possible to formulate a navigation system with the

use of this estimate of the variations as
s(t) = s (t) + 8s() (3.35)

where 5o is the nominal value of the state obtained from equations
(3.16) and where ffsi is the optimal estimate of the state obtained from
equation (3.31). This navigation system is shown in diagram form in
Figure 3.9 on page 86.

Inputs to this system consist of the acceleration, a.; received
from the IMU and the value of the roll angle, ¢. (All of this information
has been assumed perfect within this analysis.) Two simultaneous inte-
grations are performed for the nominal value, S o and the linear best
estimate, 6E . The best estimate, E, is then obtained as the sum of
these values.

It is often possible to simplify such an estimation system by
considering a continuous update of the nominal state s , to conform
with E . Such an update procedure would imply that 5E remains zero
and would thus allow integra‘tion of a single set of equations for E .

To investigate such a possibility, we combine equations (3.31) and

(3.35) to obtain
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a (s))

= +

lwQ.
|
IN

k=2
|n

o 0)+B6'§+ +K(z-H6S)

=
jo

From (3.26) and (3. 28), we find
= +
a, = Ts)la (s ) * z]
= 7 (s ) - a (s)
or z £0’8m Zo0'Zo0

Substitution of this into the equation above yields

T s Jap, ~ i
= +b (s )+t Bés + K(T
0 =0'Z0 =

1

-
'

(s.)

-a(s,) - HOS)

The linearity assumption allows the definition of p_o(_s_o), go(go), and

T-l(s )a as
20’'Zm

bls, = bs-86s) = b(s) - Bbs

ags,) T als-08s) = af(s) - Abs

-1 I | I |

T “(s )a T (s-0s)a T "(s)a + Z6s
-0 —m - - —m —'—m -

(where derivation of the final term, Z GE, is similar to the derivation

presented in section 3.5 for & g_m).
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From the definitions of B and H in equations (3.32) and (3. 30),

we obtain

vs]
o
[n?
11
o]
(o]
)

1
OoN
-
O
jn?

3 - A IR TR XC I EE W

(3.36)

It is thus possible to considerably simplify the original statis-
tical navigation system to the integration of one set of state variables

and the determination of the gain matrix

T -1

K = PH R

through the solution of equation (3.33). The functions EO(E)’ Eo(g),
and T_l('g) are evaluated from the non-linear equations (3.16), (3.17),
and (3. 26a) with the use of the best estimate, E, of the state. The

simplified navigation system is shown in Figure 3.10.

3.6.2 Derivation of Filter B (sin ¢ = 0)

When the roll angle ¢ assumes a value for which sin ¢ = 0,
equations (3.19) and (3. 21) show that the noise due to random yaw
oscillations will have no affect on the linear variations in the specific

force accelerations. With recognition of this fact, we may remove
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Figure 3.10 --- Simplified Diagram of Filter A




the noise element g from the system and redefine the vector u and

the matrices Gf and G as

uoz
u < (3.37)
- u
| P
o =AY BV
f -
2m (CL 3CL1a/ ) cos ¢
(Gel 0
0
G *© 0
0
! - 1 -
|
With the definitions of the specific force accelerations
A ViC A VC. cos
a = PAL D a = pA VL co
v 2m ’ Y 2m ’
Gf may be written as
Clav
Gf = (3.38)
czaY
where the constants ¢y and c, have been redefined as
2aCp (. +3cL1a2)
¢, ® ————— and ¢, = o (3.39)
1 C 2 C

- D L
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The covariance of the noise vector u will be defined as

e Lult) gT(T)] = QIt) 6(t-T) (3. 40)
where
q 0
Q= |*
° 9

The linear equ'ations describing the state and measurement

variations may be written in terms of these quantities as

Gé_ = Féi + GE (3.41)

y = (A+tZ)8s + G

8] +

and where A, B, and Z are obtained from (3. 20), (3.23), and (3.27) as

Uy (3.42)

where

F

Zav a n
— - A
7 0 Bav 0 5
A = (3. 43)
a a
- 0 -Ba. o0 Y
A" Y p
L B
B T
0 b, b, 0 0
byy by by 00
B = |by by, o O 0 (3. 44)
byy byy byy 00
K 0 0 0 by
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Z - (3.45)

with the elements of B defined in (3. 23).

Since the measurement variations, y, are dependent in u,,
it is possible to obtain one linear combination of the measurement
variations which contains white noise and one which is noise-free. We

represent these in the notation of section 2.3.1 as

zy = le (3.46)
X, = LZX (3.47)
where
L 1 4
1 — 1 2
L = - = (3.48)
L, Ly Ay

L, Gfu =0 (3.49)

We thus obtain perfect knowledge of

= -+ =
X, L, (At+Z)bs M25§ (3.50)
as the linear combination M2 of the state variations. Differentiating
X5, we obtain )
[ = . + .
X, M2 6s M2 bs

or x, = (M, + M,F)6s + M, Gu (3.51)



90

If M?_GB and Lleua contain independent white noise elements, we

can define a new measurement z, = 5(2 and proceed with the definition

of the statistical filter corresponding to the measurements

31 Ly
z - = :H16§+DE (3.52)
Z2 | X2
where
Ll(A+Z)
H, = oo (3.53)
M, + M,F
and L, G 10
D = |----=- -
M,G

Independence of noise in z will exist if the determinant of DQDT can

be shown to be non-singular. To this end, we derive the components of

the D matrix. From (3.48) and (3.38) we obtain

L.G, = 4,c,a +L2c

17f 11% a (3.54)

2y

The requirement (3.49) that LZGf = 0, provides a relationship between

u
(4

4,3 and L4 such that
c,a
L, = - v L, (3.55)
czaY
Also, the determinant of L. can be written as
L3
= - = _ +
|L| Lty - Lot oy (L cia, *A,c,a)  (3.56)
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Using this result in (3. 54), there follows

c,a ILI
. Sty
Lle — (3.57)
3
From (3. 50) we obtain
= +
~M2 L2 (A+2)
or
Zco Co
M2 = L3av = - ‘W -Bco W —p——- (3.58)
¢
where c =1 - —= (3.59)
o c
2
Va ¢y aV
and W = Y + 2 = (3. 60)
) a, c, aY
Va CL
We note that when sin ¢ = 0, S Y =% o =% .3, so that W = constant.
D

The D matrix may now be written in terms of the above definitions as

[ ]

czaY|L| : 0
-_— |
L3 !

D = e - (3,61)
2¢c 2 gL3a c

L.c.a a o Wit

372°vY\ Vec,a toop
2 1

b 1 -

T

If Q is a positive definite matrix, the product DQD ™~ will be nonsingular

if the determinant of D is non-zero. From the above relationship, we

write

coczaVaY|L| i (c1 - cz)aVaYlLl

p Y

| D]
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Hence, if Sy 7 sy and L is non-singular, the measurements z as
defined by (3.52) will contain independent white noise. We may now con-
tinue with the derivation of the filter for these measurements according
to the theory developed in section 2. 3. 2,

We note that perfect knowledge of a linear combination of 8 s
is available through the relationship Xy = M26 s. Thus the estimation

of & s will be reduced to the estimation of

x, = M, bs (3.62)

. My
R IV (3. 63)

is non-singular. From knowledge of M, from (3. 58), we may choose

M1 as
M, * (1 O] (3. 64)
so that
6V
= oy
X1 5h
58

Noting that the matrix D is invertible, it is possible to estimate X, by

the filter (2. 64) as

~

x, = FX *F,x,*R(z -HX)) *G,Z (3.65)
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where
F=F, - GH
n - D_lHlM_lMlT
G, = MG
[(F..F..] = MM! + MmFm~}
11 Fi2
7 =Dlz - D'IHIM'1 3}
- - X
- 2
R - PlﬁT Q! (3. 66)
and where
P, = FpP, + PIFT - RQRT (3. 67)

After a significant amount of algebraic simplification, the above

matrices may be written as

T - M113M1T (3. 68)
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¥ .
claV 0
c?_aV 0
G, ~ 0
0 0
L -
- . .
- 3 0
czaY|L|
-1
D =
1,0 <2c0 ca, W> p
co|L| A" cpay L3a Cy
B +
Llav '{'Zay W
0 L.c a
-1 el - 3 v
H].M ‘XZ\ 2. w XZ
2 .
oy _Y +0 . %y
v Vv p Co
L A
0 h12 0 —h12
H = - < = - (3.69)
hyy hy, hyy hyy
a Va
1. = 1 v + Y
where h12 c_-cC (Va a >
2 1 Y \2
- _p [w i o2V _olp
hyy ° ¢ l:"‘((bu b))V ay) T - Blnl

b‘l
N
oo

1]
1
japl
()
NN
+
©
o)
Nk
3
N
()
]
log
)
N
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2(b, ,+Ba )
- _ 13 v w
+ - -
hops =P |l —— e, (by3 -Dby3 - Bay)
a Va c,a :

B :_pr_X+2a+ Y _ 1%v tan ¢ ¢
24 c V a c,a Vv c

o v VARY o

The best estimate of the state variations are thus obtained as

N 1 X, (t)
6§(t) = M “(t) N
x ,(t)
where -1 0 0 0 0 T
0 1 0 0 0
Mt =0 o 1 0 0
0 0 0 1 0
Z_D \E_D Bp - Wo P
Vv c C L.c a
o o 370V
L .

and where gl(t) is determined through solution of (3.65). A diagram
representing this filter is shown in Figure 3.11 on page 99.

The formulation of this filter as shown above provides a rela-
tively simple equation (3.67) for solution of the covariance matrix P.
However, the filtering equation (3. 65) would require much simplification
before being applied in an on-board navigation system.

Noting that

X, = Ly,




we can obtain

Also, noting that

and that z, =

we obtain

or
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1
FIZLZZ o
(o]
L3c1av
c L
- L
s,
|L|
0
0
-
12>
-1 -1
GlD (E'H1M [
) L3c1av
czaylLl
A
|L]
0
L o |

I~
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After some algebraic simplification, we obtain

<
=
]
p—
0
©)
(k>
2
L}
|
OA
n
Q

(K=}
o

We now define a diminished state vector s

5, as

n
|
o 5= <

and its associated best estimate as

|0

= s + 65
—1o =1

1

From our choice of M1 in (3.64), we find that

08y T X

so that GEI is described by the filtering equation (3. 65). Through
considerations similar to those used to simplify filter A, it is possible

to obtain a differential equation for E_ as

_1 ~ ~
i3 T (S )a ~ - L y
s 0 21'= d -
where
b
v
b
b = Y as obtained from (3.17)
=1 bh
- 'be
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and

<

= -IN ~ ~
T (sy)a_ - a/ls;.,p)

with the best estimate of p obtained as

Y d (L

2 = b (s) +
P (s) 38,C dt 2

o2 T g

y)

We note that the elements of the linear transformation matrix L will
always be eliminated in the final results. Hence, no generality is lost
by choosing &3 = 1.

The entire filter B for tsi(t) may then be written as

1, ~ ~

- T "(s)a - L,y
5 = = -ml 4+ p (3)+ KR 1= (3.70)
- 0 —-0 - d (L )
- at ‘el
where
-1
K = ___KT]_)____
01 P
1 a.cC
i v O
]

A diagram of this simplified filter is shown in Figure 3.12. We
note a similarity with Filter A as described by equation (3.36) except

for the differentiation of measurements.

3.6.3 Combined Dual Filtering Navigation System

A complete statistical navigation system for the random errors
considered in section 3.3 and for assumed perfect measurements would
require the use of filters A and B defined above and additional switching

logic to provide continuous navigation as the roll angle passes through
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Simplified Filter B
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0 or 180 degrees. The switching logic must select the times at which
switching is to occur and equip each filter with appropriate initial con-
ditions.

Upon switching from filter A to filter B at time to’ the initial

conditions for filter B are obtained from equations (2.51) and (2. 52) as

X (t0+)
iz(to)

T T -1
1 MlP(to)MZ (to)[MZ(tO)P(tO)MZ (to):l

1 X

- T
Pl(to'*') MlP(t0+) M1 (3.71)

where

- T T -1
Piet) = Pt - P, T [ My peom, ) | vy P

(3.72)

and where P(to) is the estimation error covariance matrix obtained from
filter A immediately before switching.
Upon switching back to filter A at time t the initial value of

P(tl) is obtained from Pl(tl) according to equation (2.55) as

P.(t,)
P(tl) = M_l(t 1'1 -1 T

M (t (3.73)

) )
1 1
0T 0

The switching times, t, and t, must be chosen with discretion.

Since the error covariance matrix R in equation (3. 32b) for filter A
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becomes singular as sin ¢ approaches zero, the gain matrix K employed
in equation (3.33) for P will become indefinite when this condition is
reached. Hence, switching should occur at times when sin ¢ = € , where
€ is a small number.

The perfect measurement realized when sin ¢ = 0 affords a very
pronounced reduction of the estimation errors. As suggested by (3. 68)
and (3.69), the extent of this reduction is to reduce the rank of the co-
variance matrix P by one. Since the sine of the roll angle must be
continuous as the vehicle is rotated, however, we should expect the
covariance matrix for filter A to approach this singularity condition
before filter B is brought into use. In order to determine to some extent
how this reduction is initiated, we examine the propagation of P from
equation (3. 33) for small values of sin ¢.

With the assurance that the tangent of ¢ will not be infinite in
this region, we can rewrite the measurement error covariance matrix

R from equation (3.29) as

2
(Clav) 9 CICZaVana
R =
2 2 2 2
+
c1C22,2y9, a, (02 q, Tcy3 tan ¢qc)
where
.- ZozCD1
1 :D
C. +3C, .a° c.+cC
c. = Lo L1 c. = D Yo
2 C 3 C

L L
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or equivalently as
a 0 2 c,C5q a 0
v Cl Gy 1 2%

2 2 2
+
0 aY c,¢,4, €, 9,7 ¢y tan ¢qc 0 a

The inverse of R can then be written as

_ o 2
1 o |12 2 + 1
a c E c Ztan2¢
gl - v 1 3 de 9%
1
0  — c
a - 2
— Y - t 2¢
L c)C3 tan éqe
_ €2 [ 1 o |
2 2 a
CyC; tan ¢qc %
1
1 0 a
3 i Y
C, tan ¢qc
Noting that
—Zav a, )
—V— -V aY 0 VaY T
H = 2Z%+A = 2
a a a a
Y v 0 - Y
v v v 7

the matrix product HT R_lH, for small values of tan ¢ , can be written

as

T,-1 1

H R H=————2—‘E
qctanq:
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where _ _
A Zx o -3y,
v 1 vV 2 vV 2 pV
2 1
vk, ky 0 - k, akz
E = 0 0 0 0 0
k
2 2
“v kK -k, 0 ks o
2, o0 kK
pV 1 p o 2
p
c 2 C C c, C
) _ 1 ( 2 ) 21 ( ) 2)( D, "2 L)
wnhkl-7 =-1) .k, T —(1-2 —t= =),
03 1 03 1 L 1 D
2 2 2
k:1<CL °2+2°_2_+CD>
3 c2 C.2 2 c C2
3 D° €1 1 L

The final term in (3.33) may thus be approximated as

KRKY = pul r'lup - 1 PEP

than ¢.

As tan ¢ approaches zero, we would expect this term to be the domi-

nating term in equation (3. 33) and P could then be approximated as

Hence, we find that, as the condition sin ¢ = 0 is approached while

employing filter A, the estimation errors for all the state variables
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will be reduced. Also, if the filtering is continued to sin ¢ = 0, the
errors in estimation observed at this condition should theoretically be
exactly zero. This trend is observed in the computer simulation dis-
cussed in Chapter IV,

Note should also be taken of the manner in which the atmospheric
density noise has been defined in section 3.3.1. In order to transform
the altitude dependent white noise function w5 (h) to time dependent
noise, u, (t), it was assumed permissible to multiply by the altitude
rate as

u () = 1&] w, ()

This transformation would imply that perfect knowledge of the atmos-
pheric density is obtained when the vehicle is travelling at constant
altitude and would hence remove the effect of u, when h is zero. The
result of this removal would have little effect on the operation of filter
A, since it would merely remove the positive forcing term q, from
equation (3.33). However, in filter B, the removal of u, would again
suggest measurements which are dependent in white noise and thus force
a redefinition of the measurement and filtering equations. Hence the
possibility of the two conditions sin ¢ = 0, and h = 0, would have to be

considered in the design of a practical navigation system.

3.7 Additional White Noise Considerations

The dual filtering system derived above appears to be somewhat
cumbersome and impractical for employment as a real-time on-board
navigation system due to the necessary switching logic and to the re-

quirement for two independent filtering systems.
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The need for a dual filter is created by the removal of the
effects of primary noise elements from the measurements when such
conditions as zero roll angle and zero altitude rate are realized. This
ineffectiveness of the primary noise sources, however, would suggest
that some additional white noise, neglected because of its secondary
nature, would have a dominant effect on the system when the roll angle
is zero.

The consideration of any additional white noise sources in the
aerodynamic forces or in the measurement system would provide the
assurance of independent white noise in the measurements at all times.
Thus, the need for filter B would be eliminated and a simplified naviga-
tion system would be obtained with the employment of a single filter.

In order to compare such a single filtering system with the dual
system derived above, we will consider some additive white noise in

the measurements such that equation (3. 28) becomes

+ G u (3.74)

Y - (Z+A)6§+Gf2f a—a

where u, is white noise with zero mean and covariance
elu (thu (‘r)T] = Q._(t)d(t-T) (3.75)
—a'’’ =~a a :

Without physical justification for the origin of this noise either in the
measurement system or in the aerodynamic forces, we will assume it

to be obtained entirely from high frequency random uncertainties in the
measurement data., From considerations in section 3.5, then, we obtain

the matrix Ga as
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-1 cos X - sin X
G, =T = . (3.76)
a sin X cos X
—r

We also assume the matrix Qa to be diagonal with equal elements as

the measurement variations may be written as

G Ju

y = (z+A)ds + LG 2

f

If we assume no correlation between Ue and u a the covariance

matrix of u. becomes

T _ |9 O }
e Lup0 ) = | T ) - @y o)

a

and hence the matrix Rs , representing the covariance of measure-

ment noise, is determined as

T

=
i
—
Q
-
Q
3]

= T -+
GfoGf GaQaGa

(3.77)
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We can now investigate the independence of white noise elements

With

in the measurements through evaluation of the singularity of Rs'

Ga

and Qa defined above, we obtain

q 0
T . a
G QG
a‘va a d,
0
;2.

(3.78)

Adding this to GfoGfT defined by (3.29), R becomes

2
<clpA V2>
¢ +
T 2m 9% 9;
RS =
2
pACV pACV
—Zm—> € eV cos qp\

2

2

AV
PAs > CICZVCOS¢qa

Zm

(

2

q
> \:(czcos ¢)2qa+ (c3sin ¢)2qc:] + \7212

(3.79)

q
The term % in the determinant of RS insures that RS will remain
A\

positive definite, independent of the trajectory. Hence, we may derive

the filter for optimal estimation of the state variations, 6 s, according

to Kalman

(2)

employing equations (2.

With the system defined as

6_é. = Fbds +Gf.‘lf

where

35) through (2.37).

(3. 80)

-
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with measurements
y ~H®s ¥ LGiiG, Ju (3. 81)

where H = Z *+ A,

the optimal estimate of s is obtained from integration of

8s = Fbos + K(y-(Z2+A)bs) (3. 82)

where

T T

i} -1
K = (PH +G;Q;G; )R

S (3.83)

and where the estimation error covariance matrix, P(t), is obtained
from

. T T

P=FP+PFT+GfoGf - KRK (3. 84)

The additional term, GaQaGaT , in the matrix RS prevents the
direct reduction of the matrices F and GfoGfT in equation (3. 84) as
was observed in section 2. 3.2 (equation (2.71) ) in the case of perfect
measurements. We note also that the negative term in (3. 84) is in-
versely proportional to the magnitude of the covariance, q, ., of the
measurement noise. Hence a large uncertainty in the measurements
due to this noise would decrease the effectiveness of the filter. How-
ever, as the covariance, dg - approaches zero, the estimation errors
will approach those obtained from the dual filtering system.

Since no justification can be found for the white noise, u, it
is difficult to assign a value to the variance of this noise. In order to

evaluate the effects of u_, however, an arbitrary value will be chosen

by assuming that, over a one second time interval, the accumulated




109

velocity outputs of the accelerometers have an RMS uncertainty of
0.01 feet/sec. , and that the correlation time, Ta , associated with

this uncertainty is 0. 01 second. We then evaluate q, as

]

2t [RMS ﬁ%’) ]2 = (2) (0.01) (0.01)%

6

2x 10 feetz/sec. 3

95

The effect of an error of .01 feet/sec. 2 on the accelerations, fV and fY’
along the nominal trajectory is shown in Figure 3.13. We note the
major effect of this error upon fv and fY to occur during the initial stage
of re-entry and again as the vehicle ascends through a ballistic skip;
however, during portions of high acceleration, its effect is overcome

by the acceleration dependent noises considered in section 3. 4.
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CHAPTER IV

COMPUTER SIMULATION OF APOLLO
RE-ENTRY NAVIGATION SYSTEM

This chapter presents quantitative results obtained from a
computer simulation of inertial navigation systems employed during

a typical Apollo re-entry mission.

4.1 Digital Computer Program

The computer program employed to simulate the re-entry navi-
gation systems considered here is shown in Appendix A. The program
was written in the MAD language for use on an IBM 7094 computer with
a time-sharing facility and provides for numerical integration of the
nominal equations of motion for the state variables and of the navigation
error covariance matrix P. Integration is performed through a fourth-
order Runge-Kutta scheme. The roll control program is obtained from
tabular values through a third order Newtonian interpolation scheme.

The program is designed to study three types of navigation
systems:

1. A deterministic system for perfect measurements.

2. A dual-filter statistical system employing alternate
use of Filters A and B (see section 3. 6) with perfect
measurements.

3. A single filter statistical system employing only filter

A for perfect measurements with additive white noise.
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4.2 Vehicle Parameters and Nominal Trajectory

Typical values of parameters for an Apollo command module
during re-entry were obtained from B. Crawford(m) as
Weight = 11,000 1b.

AC = Frontal Area = 129.4 f’c.2

a = Angle of Attack = 22 degrees

CB = Ratio of Lift to Drag = 0.3

The dependence of the lift and drag coefficients on the angle of
attack and sideslip angle, as approximated by equations (3.3), cannot
be found in the open literature. Without further knowledge of this de-

pendence, we will assume

CLO=CYO=-C = -C

and Che = "Cp1 7 "Cp2

From the known values of @ and CL/CD , then, we obtain

C

Lo 1.1803

and C

Do 1.5107

The geodetic parameters assumed in this study are

Earth Radius = 2.09029 x 10' feet

R =
e
Q = Earth Rotation Rate = 7.292115 x 10™° rad. /sec.
g, - Gravitational acceleration at Surface = 32.2168 ft. /sec. 2

The atmospheric density is approximated as

., o-BB

P o
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where

2.3769 x 10™° slug/ft. °

1

and B 4,2553191 x 107° feet™

The nominal trajectory, assumed to be in an equatorial plane
about a spherical rotating earth, is obtained from equation (3. 6) with
given initial conditions and roll control program. The initial conditions

in inertial coordinates were assumed to be

V(0) = 36,200 feet/sec.
y(0) = -6.0 degrees
h(0) = 400,000 feet
8(0) = O degrees

After conversion to a rotating coordinate system, we obtain

V(0) 34655, 5 feet/sec.

Y(0) -6.268 degrees

The nominal roll control program was obtained from
B. Crawford(27) through a computer simulation of the proposed Apollo
guidance scheme developed by the MIT Instrumentation Laboratory.
The control program, as shown in Figure 4.1, is designed to achieve
a range of 2550 N. Miles (on a non-rotating earth) in an equatorial
plane with the above initial conditions. The ratio of lift to drag in the
plane of motion for this roll program is shown in Figure 4. 2.

The nominal trajectory produced by the above initial conditions
and roll program is illustrated in Figures 4.2 and 4.3. All values

shown here are with respect to a rotating earth. The accelerations
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a_ and ay (defined by equation (3.16) ) for this nominal trajectory

are shown in Figure 4. 4.

4.3 Initial Covariance Matrix

Uncertainties in estimates of position and velocity at the start
of re-entry will be based on navigation errors during the midcourse
or trans-earth phase of the mission. A midcourse navigation error

(28)

analysis has been conducted by G. Levine through a Monte Carlo
simulation of a typical Apollo trans-earth trajectory. The navigation
system in this analysis utilized celestial sightings to determine the
vehicle position and velocity. The results of fifty individual runs ob-
tained from this analysis were employed to compute the statistical
properties of initial navigation errors for re-entry. A short computer
program was written to convert deviations in inertial position and
velocity vectors to deviations in velocity, flight path angle, altitude,
and range, and to compute the statistical properties of these deviations.
The program and results obtained from it are shown in Appendix B.

From the results of this analysis, the following RMS values of initial

uncertainties were obtained

RMS(6V) = 23.92 feet/sec.
RMS(8y) = 0.183 degrees
RMS(éh) = 27,155 feet
RMS(Reée) = 137,090 feet

with correlation coefficients

pVY 0.99519

pVh = -0. 99878
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Pg = 0.99536
th = -0.99367
pYe = 0. 99998
Phe -~ O 99411

4.4 Results of Computer Simulation

Uncertainties in estimation of position and velocity have been
assumed within this study to be random errors with zero mean and with

statistical properties described by the covariance matrix
- ~o ~ T
P(t) = e[ (6s(t)-08s(t)) (Bs(t)-06s(t))" ]

where 8s (t) is the actual variation in the state vector and 6§(t) is the
estimated variation. The differential equations for this covariance
matrix have been derived in Chapters II and III for the deterministic
and statistical navigation systems. In this section, we show a quan-
titative comparison of the RMS estimation errors as obtained from

these navigation schemes.

4.4.1 Deterministic Navigation with Perfect Measurements

In the deterministic scheme, navigation is performed by direct
integration of the specific force acceleration measurements and the
computed gravitational accelerations. The differential equation for the
estimation error covariance matrix with an assumed perfect IMU system

is shown by equation (2. 24) to be
B -BP +PBT

We note the absence of the term GQgGT here since we have assumed

no random disturbances in the gravitational accelerations.
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The matrix B is obtained from the linear model of the vehicle

dynamics as

B=[10] B T

where B is defined by (3.32).

RMS uncertainties in V, y, h, and range obtained from this
simulation are shown in Figures 4.5 through 4. 8.

In order to examine the effects of the high correlations in the
initial estimation errors, another simulation was made with an initially
uncorrelated error matrix, P(0). The results of this simulation are
also shown in Figures 4.5 through 4. 8. A very pronounced reduction
in the errors in estimation of velocity and altitude is observed for the

initially correlated errors.

4.4.2 Statistical Navigation with Dual Filtering System

We now show the results of navigating with statistical estima-
tion for assumed random disturbances due to atmospheric variations
and vehicle oscillations. The filtering equations for this navigation
system were derived in section 3.6. It was found that, due to the in-
sensitivity of measurement variations to noise in the sideslip angle
when the sine of the roll angle is zero, that two independent filters are
necessary. Propagation of the covariance matrix for filter A during
the time when sin @ is not equal to zero is obtained by the differential
equation (3. 33).

When sin ¢ approaches zero, filter B is brought into use.

Initial reduction of the covariance matrix is computed from equations
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(3.68) and (3.69) and the reduced covariance matrix is computed ac-
cording to equation (3.67).

The switching logic employed in the computer simulation of this
dual filtering system is as follows:

If filter A is in operation at the beginning of an integration step,
a check is made at each time considered during integration of that
step on the absolute value of sin ¢. If this value becomes less than a
threshold \;alue, sin ¢o , the integration is halted and filter B is put
into operation at the beginning of the time step.

If filter B is in operation at the beginning of any succeeding
integration step and if the value of sin ¢ at that time is greater than
or equal to sin ¢0 , a switch is mAade to filter A.

Since the initial value of the roll angle in the nominal control
program being used is 180 degrees, a switch is immediately made to
filter B. Due to the perfect measurement obtained, and to the high
correlations between the initial estimation errors, a dramatic reduc-
tion is observed in all the estimation errors as shown in Table 4. 1.
The significance of initial correlations in the estimation errors is noted
by applying the same reduction to initially uncorrelated estimation
errors. The results of this reduction, also shown in Table 4.1, show
a significant change only in the estimation errors for range and flight

path angle.
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RMS Errors att = 0 oV Oy éh. Reé.e
fps deg. mi. mi.

Before Measurement 23.92 . 183 4,47 22.5

After Measurement

Initially Correlated 2.21 - 0023 - 475 135

After Measurement

Initially Uncorrelated 23.92 -164 4.47 9. 87

Table 4.1

Initial Reduction of Estimation Errors
due to Perfect Measurement

This behavior becomes apparent through examination of the matrix Z
relating variations in state to variations in the measurements in equa-
tion (3.27). Since the state variations 8y and 66 have an equal but
opposite effect on the measurements, a perfectly known linear com-
bination of the measurements should tend to reduce the errors in
estimation of 6y and 06.

Three simulations of the dual filtering system were performed
to determine the effects of the initial correlations and of the threshold
value, ¢o , employed in the switching logic. Values of ¢o of 0.1 and
5.0 degrees were studied for the initially correlated case and 5.0
degrees was employed for the simulation of initially uncorrelated errors.
The results of these studies are shown in Figures 4. 9 through 4.12.

We note additional discontinuous reductions in the estimation
errors at times of 38, 120, and 592 seconds as the vehicle is rolled
through angles of 0, 180, and 360 degrees, respectively. The initially
uncorrelated case does not reveal dramatic discontinuities until sig-

nificant correlations are encountered.
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The choice of ¢o is seen to have an almost insignificant effect
on the estimation of all state variables except that of altitude for which

the effect is seen to be quite large.

4.4.3 Statistical Navigation with Single Filtering System

A single filter navigation system was derived in section 3.7 with
the assumption of additive white noise entering through the measurement
system. Due to the difficulty in assigning a value to the covariance of
this additive noise, two simulations were performed for values of the

5

covariance, q, of 2.0x10_6 and 5.0x10" feetz/sec.3, corresponding

to RMS errors in acceleration measurements of 0.01 and 0. 05 feet/sec.z,
respectively, and to correlation times of 0. 01 second.

The results of these simulations are also shown in Figures 4.9
through 4.12. The differences in estimation errors obtained for the
two values of q, are almost indistinguishible over most of the flight.
Comparing these results with those obtained with the dual filtering
system, we note a continuous, yet equally dramatic reduction of the
initial estimation errors. Within a time of 50 seconds, the RMS errors
in velocity and altitude are almost identical with those obtained with the
perfect measurement system. An increase in these errors is then noted
due to the increased effect of the noise, u,, on the measurements as
observed in Figure 3.13. The RMS errors in the flight path angle and
range also descend rapidly during the initial 10 seconds, but level off
to a value somewhat higher than that obtained initially with the dual
filtering system. A steady descent is then observed towards the lower
dual filter errors. The rapidly ascending errors in estimation of flight

path angle near the end of the simulation is observed in all navigation
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systems due to the large increase in flight path angle shown in Figure

4.2,

4.5 Numerical Difficulties

A discussion of results obtained through numercial integration
of a matrix Ricatti equation such as (3.33) would generally be incom-
plete without a section devoted to numerical difficulties.

An examination of the negative term in (3. 33) shows this term to
be inversely proportional to the covariance matrix, R, of the measure-
ment noise, as was observed in section 3.6.3. As R approaches condi-
tions of singularity, the derivative of the matrix P grows rapidly in the
negative direction, thus reducing the covariance of estimation errors.
Although the matrix P should theoretically remain positive semi-definite,
errors encountered through truncation and roundoff within the digital
integration scheme force it to become negative definite and henceforth
totally unstable. This condition is enhanced when high correlations are
present in the covariance matrix.

In order to overcome this difficulty, it was found necessary to
reduce the size of the time step employed by the Runge Kutta integration
scheme until a stable integration of the covariance matrix was obtained.
An empirical time step as a function of time was thus derived for each
filter simulation to provide for minimum total computer usage and for
stability of the integration. The time steps used for each simulation
are shown in Figure 4.13. We note that extremely small time steps
were necessary for integration of the single filter with q_ = 2. 0x10-6

due to the comparatively low value of the R matrix, Due to the number
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of integration steps required for stability of the P matrix, the total
computer usage for each simulation was extremely high as shown in

the table below.

. . Number of Computer Usage
Simulation Integration Steps {(Minutes)
Deterministic 350 1
Dual Filter--Uncorrelated P(0),
¢O = 50 28,000 21
Dual Filter--Correlated P(0),
= 50 34,000 26
o
Dual Filter--Correlated P(0),
=.10 52,000 39
o
Single Filter--q, = 2. x 107° 360,000 68
Single Filter--q_ = 5. x 107> 103, 000 43

It is felt that increased stability and decreased computation
time could be obtained with the use of double precision and a predictor-
corrector type numerical integration scheme such as the Adams-Moulton
method within the computer program. The insertion of such into the
present program would have required a major revision - not only of the
program, but of the coding language - and was hence deemed unfeasible
at the time. It is recommended that future studies of such systems be
conducted with the above numerical difficulties in mind and that the

numerical integration programs be designed accordingly.

4.6 Summary of Results

The results obtained from simulations of the three navigation

schemes described above show that, in general, the statistical
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navigation schemes are effective in providing better accuracy in navi-
gation than the conventional deterministic scheme.

The acute decreases in estimation errors obtained through the
perfect measurement with the dual filtering system follow closely the
theoretical results suggested in section 3.6.3. These reductions are
also found to be highly dependent on the correlations in the estimation
errors immediately before the switch to filter B is made.

If the initial estimation errors are highly correlated, the results
obtained from the dual filtering system would suggest the necessity of
statistical filtering only during the first few seconds after the employ-
ment of filter B, i.e., after the roll angle reaches 0° or 180°, to reduce
the initial estimation errors. After these errors have been sufficiently
reduced, the statistical system would provide little advantage over a
deterministic one when the measurements contain no white noise. Any
additional navigation errors due to bias random errors or colored noise
could only be reduced by adding state variables to be estimated by the
statistical navigation system. If the initial estimation errors are un-
correlated, however, insufficient information is provided by the perfect
measurement obtained when sin ¢ = 0 to reduce errors in estimating the
velocity and altitude immediately. Thus, the dual filtering statistical
navigation system should be employed throughout the flight.

The acceptance of the dramatic reductions exhibited by the dual
filtering system would be based on total acceptance of the validity of the
assumptions of a measurement system containing no white noise and of
white noise entering the aerodynamic forces primarily through angular

motions of the vehicle. Due to limited availability of quantitative data
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concerning random errors present in aerodynamic forces during
re-entry and concerning high frequency random errors in inertial
measurements, it is impossible at the present time to provide such
total acceptance.

The single filtering system includes the effects of an additive
white noise entering through the measurement system. Although the
results obtained with this system appear to be independent of the mag-
nitude of this no-ise source within the range of values considered, the
accuracy obtained with this system is found to be generally lower than
that resulting from the dual filter, yet considerably higher than that

derived from a deterministic scheme.
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Figure 4.13

Integration Time Steps used in Simulations
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This research has investigated the statistical inertial naviga-
tion of vehicles accelerated primarily by non-gravitational forces during
short intervals of time. The source of information for the navigation
system is an inertial measurement unit with assumed random constant
error coefficients.

Due to the absence of white noise in the accelerometers, the
high frequency measurement uncertainties are derived solely from
white noise in the specific force accelerations observed by the meas-
urement system. The design and effectiveness of the filter to be in-
corporated in a statistical navigation scheme was found to be based on
the linear dependence of the measurements on these white noise sources.
If an insufficient number of white noise elements are present to provide
measurements which contain independent white noise elements, then
perfect measurements are realized which allow dramatic reductions in
estimation errors and which require differentiation before an optimum
filtering system can be designed. If the number of independent white
noise elements driving the total acceleration of the vehicle is less than
or equal to the number of measurements, then the estimation errors
in navigation of an observable system are asymptotically reduced to

zero when statistical estimation is employed.
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Non-gravitational accelerations encountered by vehicles would
be derived from propulsive, aerodynamic, or hydrodynamic forces.
Due to the independence of thrusting forces on the state of the vehicle,
it was found that no advantage could be realized through a statistical
navigation scheme during thrusting over the conventional deterministic
system. Since aerodynamic forces are dependent on the vehicle's
velocity and altitude, however, significant improvement in navigation
accuracy can be realized through statistical estimation.

A statistical navigation system was developed for a simplified
two-dimensional Apollo re-entry mission. With the assumption that
relatively high frequency vehicle oscillations are the primary sources
of white noise random errors perturbing the aerodynamic forces, it
was found that such a navigation system would require two independent
statistical filters for alternate operation depending on the vehicle atti-
tude. Computer simulation for a typical Apollo re-entry trajectory re-
vealed dramatic improvement of navigation accuracy due to the inclusion
of statistical estimation in the navigation system. The effectiveness of
this improvement was found to be highly dependent on the correlations
present in the initial estimation errors.

The dual filtering system, however, was found to be cumber-
some and would be rendered impracticable for a real time navigation
system due to the necessity for two independent filters, for switching
logic, and for the differentiation of measurements. The inclusion of
arbitrary additive white noise in the measurement system provided for
the derivation of a simplified navigation system requiring a single filter.

Results from computer simulation of this single filtering system
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approached those displayed by the dual system and were found to be
independent of the magnitude of the noise source within the range of
values considered.

The simplified single filtering system allowed a computation
time per integration step of 0. 25 second with an IBM 7094 digital com-
puter, as compared with 0.45 second required for the dual system. Due
to instability in integration of the estimation error covariance matrix,
however, a requirement for smaller integration step sizes forced the
total computation time for the single filter simulation to be higher than
that required for the dual filtering system.

Unless a more accurate integration scheme is employed which
will allow stable numerical integration of the covariance matrix with
time steps exceeding the computation time per step, neither the single
nor dual system could be recommended as a practicable real-time
closed loop on-board navigation system.

An alternative navigation scheme would be an open loop statisti-
cal filtering system employing pre-calculated filter gains from assumed
nominal roll control programs. No attempt was made within this study
to examine the dynamics of the filter gains or to study the effects of
employing gains obtained from one nominal trajectory to filter measure-
ments secured along a different trajectory.

A major point made within this thesis is the limited knowledge
of the statistics of variations in atmospheric properties within the re-
entry altitude range. It is recommended that further study be made to
~determine more accurately the statistical properties of error sources

involved in the prediction and measurement of aerodynamic forces.
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Continued effort should be directed toward the design of numer-
ical integration schemes which will provide increased stability of the
covariance matrix integration and thus allow the navigation schemes
presented herein to be deemed practicable for closed-loop real time
navigation. It is also recommended that consideration be extended to
the estimation of major error coefficients in the IMU as well as the

state of the vehicle.
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APPENDIX A

DIGITAL COMPUTER PROGRAM FOR SIMULATION

OF APOLLO RE-ENTRY NAVIGATION SYSTEMS
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R MAIN PROGRAM FOR FILTERING OF PERFECT MEASUREMENTS
R
PROGRAM COMMON XIN(5)eX(5)eXX(5)9DX(20)ePIN(25)9P(25)
1 PP(25)sDP(100)9C(50)sN(30)9sY(30)9T(10)sCT¢1000)
INTEGER I eNsMINToDELPRT9DUMySUPPRTsYESORNINX9NP9DELMESIMEAS
INTEGER JebLsMslLbLoIJeoILsLJsLMeNP2sROTATE
DIMENSION SIGMA(5)s CORRE(10)

R
R ASSIGN INPUT CONSTANTS
R

START EXECUTE GETTMe {DATE9RUNTIM)

V'S WEIGHT = 1100UV.0
V'S AREA = 1294

V'S CDU = 165107301
VIS CLO = 141803427
VIS CD1 = = 145107301
V'S CL1 = = 161803427

V'S EARTHR = 24090290t7
V'S ERATE = 0e7292115E-4
V'S FTTOMI = 6U80s2

VIS RHO = 00023769

V'S BETA = 442553191E-5
VIS GO = 324216832

VIS Pl = 341415926

VIS PHI = 040

VES VeL = 3020ve0

VIS VU = 239444042

VtS VELTH = Qev

VIS GAMMA = =640

V'S ALPHA = 22.0

V'S ALT = 4U00U060

V'S RANGE = OeU

VIS KO = 060

VIS K1 = 0l

VIS K2 = 062

VtS MEAS = 2 ‘

V'S SIGMA(1)=23e9290e18394e4661426922e54694292e0E—11
V'S CORRE(1)=¢995199=e9987890995369009-09956/9e779989040
V'S CORRE(B8)=2-¢9941190409040

VIS SIGAC = Qevl

VIS SIGALP = 00125

V'S SIGZET = 00125

VIS TIME = 060

VIS T(6) = =lev

VtS DELTAT = 2.0

V'S HMEAS = 41000040

V'S ALTFIN = 10000040

VIS MINPHI = 540

VIS N(2) = 1

V'S N(10) = 2
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VIS NX = 4

VIS NP = 5

VIS MINT = 500u

VECTOR VALUES ROTATE = ]
VtS DELPRT = 10

VIS SUPPRT = 1

PRINT FORMAT TITLEs DATE RUNTIM

PRINT FORMAT NEWDAT

READ AND PRINT DATA

W'R MEAS +Ee 2 e ANDe HMLAS olLe 4e0tSs P!'T BoGFLTS HMCAS
VIS BEGFLT = $/He FILTERING ONLY BELOWe 9~ YelebHFECL T o%$

R COMPUTE CONSTANTS

R

C(1l) = PI/180sU

Cl2) = 18040/P1

AL = ALPHa * C(1)

DT2 = 240

Cl9) = AREA * GO / (240 * WEIGHT)
CD = CDO + CD1 * ALePe?2

CL = (CLO + CL1 * ALePs2) * AL
C(3) = C(9) * CD

Cla) = C(9) » CL

C(5) = GO

C(6) = EARTHR

C(7) = RHO

Cl8) = =« BETA * C(6)

C(10) = 240 % CD1 * AL / CD
Cll1) = (CLO + 3,0*%CL1*AL+Pe2) / CL
C(12) = C(19) /7 C(11) -

Cl13) = 1e0 = C(12)

Cltl1l4) = VELTH / C(6)

C(16) = HMEAS 7/ C(6)

Cl15) = SINe (MINPHI * C(1))
Cl17) = ALTFIN /7 C(6&)

Cl18) = ((SIGAC/VO)ePe2)*.02
C(20) = 1¢0 / FTTOMI

Cl21) = (SIGALP +Pe 2) * DT2

SDT2 = SQRTe(=240%C(8))

C(23) = KO * SDT2

Cl24) = (440%K1 = K2) * SDT2 / 340

C(25) = C(6)%(K2 = K1) * SDT2 / 3,0E5

c(28) = voO

C(31) = 240 # ERATE

C(32) = C(6) * ERATE * ERATE

Cl40) = (C(10) * SIGALP) +Pe2 * DT2

C(41) = C(10) * C(11) * SIGALP.Pe2 * DT2
Cl42) = ((CD + CLO) * SIGZET / CL)ePe2 * D12
C(43) = (C(11) # SIGALP) «Pe 2 * DT2




PZERO

R
R
R

Y(6) = PHI * C(1)
Y{7) = COSelY(O))
COMPUTE INITIAL CONDITIONS
WHENEVER ROTATE eEel
X(0) = GAMMA * (C(1])
X(3) = ERATE*(L{6) + ALT)/VEL
X(4) = X(3)/C02e(X(0))
X{5) = SQRTe(le0 + X(3)2X(3)*(1lalU-ceu/X(4)))
X(6) = ASINe (SINe (X(0))*VEL/X(5))
XIN(1) = X(5)/C(28)
XIN(2) = X{(6)
OTHERWISE
XIN(1) = VEL 7/ C(28)
XIN(2) = GAMMA * C(])
END OF CONDITIONAL
XIN(3) = ALT / C(6)
MILE = C(6) * C(20)
XIN(4) = RANGE / MILE
VSIG = SIGMA(1)
GAMSIG = SIGMAL(2)
HSIG = SIGMA(3)
RSIG = SIGMA(4)
SIGRHO = SIGMA{S)
RHOVG = CORREL( 1)
RHOVH = CORRE(2)
RHOVR = CORRE( 3)
RHOVP = CORRE(4)
RHOGH = CHORRE(5)
RHOGR = CORRE(6)
RHOGP = CORRE(7)
RHOHR = CORRE(8)
RHOHP = CORRE(9)
RHORP = CORRE(10)
SIGV = JABS.(VSIG/C(28))
SIGGAM = (ABSe (GAMSIG*C(1))
SIGH = +ABSe (HSIG/MILE)
SIGR = ¢ABSe(RSIG/MILE)
T*H PZEROy FOR I = 1919leGe25
PIN(I) = 040
PIN(1) = SIGV ePe 2
PIN(2) = SIgV * SIGGAM * RHOVG
PIN(3) = SIGV * SIGH * RHOVH
PIN(4) = SIGV * SIGR * RHOVR
PIN(5) = SIGV*#SIGRHO¥RHOVP
PIN(6) = PIN(2)
PIN(7) s SI3GAM#SIGGAM
PIN(8) = SIGGAM % SIGH * RHOGH
PIN(9) = SIGGAM * SIGR * RHOGR
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I

VLt




READCD

NOMNAL

INITX

INITP

PIN(1U)
PIN(11)
PIN(12)
PIN(13)
PIN(14)
PIN(1D)
PIN(16)
PINCLT)
PIN(18)
PIN(19)
PIN(20V)
PIN(Z])
PIN(Z2)
PIN(Z3)
PIN(24)
PIN(25)
T(9) =
T(10)

N(1l) =
N(11l)

N(13)

N(14)

N(9) =
N(26) =
WHENEVE

Honon

R'T NCARD»
T'H READCD»

J = 8%(

R'T CARD»

PINC2)
PIN(B)
SIGH *
SIGH #*
SIGH #*

145

SIGGAM* SIGRHO*RHOGP

SIGH
SIGR * RHOHR
SIGRHO * RHOHP

PIN(4)

PIN(Y)

PINCL4G)

SIGR * SIGR
SIGR*STGRHO*RHORP
PIN(S)

PINCLO)

PIN(LD)

PIN(20)

= SiGRAQ # SIGRHO
TIME
DELTAT

LI T T T T O TN T [ A (S T [N I | A 1]

MINT

DELPRT
NX
NP

MEAS

SUPPRT
R N(2)eeO s TRANSFER TO NOMNAL
N{3)

FOR I =
I-1) + 4
CT{J)eaoCT(J+T)

IslsleGeN(3)

CONTINUE

VS NCARD =
V'S CARD =

N(3)
N(2)

o

NP2 =
T(1)
T(2)
T'H INI
X(1) =
T'H INI
P(I) =

$13%%
34(F5609E1368)
8%*N(3) + 3

0

*9%

NP % NP

T(9)
T(10)

TXe FOR 1 1olsTeGeNX

XINCI)

TPe FOR 1 19lsleGeNP2

PINCI)

EXECUTE RUNKUTe(OSERRET)
EXECUTE DERVIVe(O0)

R

R INTEGRATION

R
T'H INGRATs FOR LL = 1919LLeGeMINT
LL = LL

EXECUTE CDELTe(LL)




INGRAT

ERRET
FINAL

ITERAT
EXACT

QUIZ
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EXECUTE RUNKUTe(LLsERRET)

WIR X(3) oLEe C{17)y T'O FINAL

CONTINUE

PRINT FORMAT FAILEDy MINT

TRANSFER TO QUIZ

T'H ITERATy FOR I = 1919leGe5

W'R oABSe(C(171=-X(3)) oLEe 5eE-8s T'0 EXACT

DHDT = C(28)#X(1)%Y(8)/C(6) -

T(2) = (C(17) - X(3)) / DHDT

N(25) = N(11)

EXECUTE RUNKUTe(LL9ERRET)

W'R N(26) oEe 3s T'O QUIZ

EXECUTE RUNKUTe(-1sERRET)

V'S FAILED = $///1H 14+68H INTEGRATION STEPS PERFORMED WITHO
1UT SATISFYING STOPPING CONDITION. %%

PRINT FORMAT AuK

VIS ASK = $///52H CONTROL RETURNED TO MAIN PROGRAM AND RUN (O
IMPLETEDs /45H DO YOU WISH TO CONTINUE THROUGH ANOTHER RUN
2 /%%

READ FORMAT ANSWER»sYESORN

V'S ANSWER = $C6 *$

W'R YESORN sEe SYES $» TtO START

EXECUTE EXITe

V'S TITLE = $70H1 STUDY OF NAVIGATION SYSTEM WITH FILTERING O
1F PERFECT MEASUREMENTS  2C7 *$

V'S NEWDAT = $HeO *#*FOLLOWING IS ALL NEW DATA SUBMITTED FOR
TTHIS RUN %% 4/%%

E'M
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R SINGLE FILTER INTEGRATING ROUTINE
R SUBROUTINF RUNKUT
R

EXTERNAL FUNCTION (STEPNO)
PRUOGRAM COMMON XIN(S)'X(S)9XX(5)’DX(20)9PIh(25)vP(25)o
1 PP(Zb)’DP(IOO)’C(5O)9N(30)’Y(BO)o](lO)’CT(looo)
INTEGER IoJaKvNoLL’LLleX’NX2’NX39NENT9STEPNO,NORTAB
INTEGER MsNP9INP2sNP22yNP23yMEAS
DIMENSION DT(4)s TAR(B)s R(3)
ENTRY TO RUNKUT,
W'R STEPNO «GeO
TYO ENTRY
O'R STEPNO «Le O
T*O PRINT
OTHERWISE
T'O BEGIN
END OF CONDITIONAL
BEGIN DT(2) Oe5
’ DT(3) CeF
DT(4) le0
MILE = C(6)%C(20)
NX = N
= N

2 * NP2

3 * NP2

N(9)

WIR X(3) +Ge C(16)s N(9) = 0O
NX2 = 2 # NX

NX3 = 3 % NX

WIR N(10) oNEe 2s T10 AUX
T'H TABLEs FOR I = 141914Geé

2

©

N

w
nnwu

TABLE TAB(I) = CT(I+3)
NENT = 7

AUX EXECUTE AUXLRYe
N(25) = 0

EXECUTE CDELTe(0)

WIR N(26) «Ge 19 T'O RETURN

PRINT FORMAT PGSKIP

PRINT FORMAT HEAD1

P'T XOUT, T(l)sX(1)*C(28)yX(2)*C(2)oX(3)*C(6)9X(4)*MILE9

1 YU6)*C(2)sY(5)

PRINT FORMAT HEAD?2

T'H DIAGONY FOR I = 1sl91eGe5b

J = 5%([=1) + I
DIAGON DP{I) = SQRT&(P(J))

P'T SIGMA, DP(l)*C(ZS)oDP(Z)*C(Z)’DP(3)*M1LEODP(4)*MILE.DP(5)

I 1

J 1

T'H CROSs FOR K = 1914KeGelO
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J=J+1
WIR J oLEe 55 T'O GOONN
I =1+ 1
J=1+1
GOUNN LL = 5*(I-1) + J
DP = DP(1) * DP(J)
CROS DP(K+5) = P(LL) / DP
P'T CORREs DP(6)eeeDP(15)
FIN
ENTRY TYH XINITs FOR I = 1s1sIeGeNX
XINIT XX(I) = X(I)
TYH PINITs FOR I = 191914GeNP2
PINIT PP(1) = P(I)
R
R COMPUTE DERIVATIVES
R
EXECUTE DERVIVe (1)
T(3) = T(1)

T'H LOOPs FOR VALUES OF LL = 293+4

DEL = T(2) * DT(LL)

T(1l) = T(3) + DEL

LLY1 = NX * (LL - 2)

T*H XSTEPs FOR I = 1919l1eGeNX
XSVFP X(I) = XX({I) + DX(LL1+I) % DEL

EXECUTE AUXLRYs

LL1 = NP2#(LL=-2)

T'H PSTEPs FOR I = 1sl9leGeNP2

PSTEP P(l1) = PP(I) + DP(LL1+I) * DEL
R
EXECUTE DER/IVe (LL)
LOUP CONTINUE

DEL = DEL / 6eU
TtH NEWXe FOR I = 1s1sIleGeNX
NEWX XCI) = XX(I)+(DX(I)+2e*(DX(I+NX)+DX(I+NX2))+DX{I+NX3))*DEL
EXECUTE AUXLRY.
WIR X(3) oGe C(16)
N(9) = O
O'E
N(S9) = MEAS
E'L
T'H NEWPy FOR I = 1s191eGeNP2
NEWP P(I) = PP(1) + (DP(I) + 2*(DP(I+NP2) + DP(I+NP22))
1 + DP(I+NP23)) % DEL
THROUGH TSTPNGs FOR I = 19691eGe25
W!'R P(I) eLe OeOs T'O PRINT
TSTPNG CONTINUE
R
WHENEVER T(1) eLe T(6)s FUNCTION RETURN
N(25) = N(25) + 1
WIR N(25) oEe N(11)s T'O PRINT




RETURN
PRINT

DIAG

NEGP

CONTRL

INTERP

1
2

Eel e B v i Vi
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FUNCTION RETURN
N(25) = O
W'R N(26) o356 29 FIN
PRINT FORMAT XOUT, TEL) o X (1) *C(28)sX(2)%C ()9 X(3)%C(6)
o XU4)*MILEsY(6)%#C(2)9Y(5)
T'H DIAGs FOR I = 1919leGeb
J = 6*] -~ 5
DP(I) = SQRTe(P(J)sNEGP)
P'T SIGMA, DPEL)*C(28)9DP(2)%C(2)9DP(3)%MILESUP(4)*MILE$DF(5)
VIS SIGMA = $1HO 5E1848 *$ '
I
J

[€

1

1

CROSSs FOR K = 1919KeGel0

J + 1

J eLEe 59 T'O GOON

I + 1

I + 1

L = 5%(I-1) + J

P = DP(I) * DP(J)

DP(K+5) = P(LL)/DP

P!'T CORREs DP(6)eeeDP(15)

V'S CORRE = $1H 10F12e89/%%

FIN

P'T PNEGse Is P(1l)eeeP(25)

VIS PNEG = $//31H P MATRIX DIAGONAL ELEMENT NOe I3

21H HAS BECOME NEGATIVEe /29H THE ENTIRE P MATRIX FOLLOWS.
// S5(5E16e89/) *$%

ERROR RETURN :

# 0 oDUHUIT NN

T
J
W
I
J
L
D

SUBROUTINE AUXLRY

INTERNAL FUNCTION
ENTRY TO AUXLRYa

Y(4) = 140 + X(3)

Y{O) = C(5) / Y(4)ePa2

Y{5) = C(7) * EXPe(C(8)%X(3))
Y(B) = SINe(X(2))

Y(9) = COS.(X(2))

Y(15) = C(23) + (C(24)+C(25)%X(3)) * Y(5)
WIR T(1)eLEsTAB(3) oORe NENT oGEs N(3)s T'0O INTERP
TAB(l) = TA3(3)
TAB(2) = TAB(4)
TAB(3) = CTINENT+1)
NENT = NENT + 2
TAB(4) = CT(NENT)
TRANSFER TO CONTRL
Y(6)=TAB(2)+(T(1)-TAB(1))*(TAB(#)-TAB(Z))/(TAB(3)-TA8(1))
Y{T7) = COSslY(6))
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R = C(28) *# Y(5) * X(1)
Y(16) = = C(3) * R * X(1)
Y(10) = C(4) * R
Y(17) = Y(10) * Y(7)
Y(1) = = Y(10) ¥ SINe(Y(6))
FYN
E'N

R

R

VIS XOUT = 31H F9e59sF13439sF1lbeT913e29F15e69F 100291264 *
V'S PGSKIP = $//1H S20930HINTEGRATION OF S5IATE VARIABLES*S
V'S HEAD1l= $///1H S2s4HTIMESB4HVELeS1U»5HGAMMASB 9 4HAL T e
151 195HRANGES69 3HPHIST93HRHO / 1H S294HSECeS5895HFPSe S99
2 G6HDEGeS993HFTeS1295HNeMI 056 94HDEGe 53910HSL e/ CUF T/ %)
V'S HEAD2 = $1H0OS10926HERROR COVARIANCE MAIRIXs P /%%
R
END OF FUNCTION




FZEROQ

ENTRY

151

R SINGLFE FILTERING OF PERFECT MEASUREMENTS
R SUBROUTINE DERVIV
R
EXTERNAL FUNCTION (LL)
PROGRAM COMMON XIN(5)’X(5)’XX(S)’DX(ZO)’PIN(25)QP(ZD)0
1 PP(25)QDP(lOO)’C(SO)ON(BO)!Y(30)'T(10)9Cr(1000)
INTEGER I9JsL9M9N!IJ;ILoLMoLJ’JLvLL9LLXvLLP’NP9NP2
DIMENSION F(25)’F(25)’H(10)OK(IO)!PH(10)00(4)0R(4)’R1(4)
R
ENTRY TO DERVIVe
WYR LL «Ge Os T'O ENTRY
NP = N(14)
NP2 = NP # NP
THROUGH FZEROs FOR 1

lolsleGe25

F(I) = 0,0

FIN

X1 = C(28) * X(1)

FV = Y(16)

FG = Y(17)

YU022) = Y(4) * C(32) /7 C(28)
Y(21) = Yi8) * Y(22)

Y(22) = Y(9) * Y(22) / X(1)
Y(24) = -~ Y / C(28)

Y(23) = Y(24) % Y(8)

Y(24) = Y(24) * Y(9) / X(1)
SUM1 = Y(21) + Y(23)

SUM2 = Y(22) + Y(24)

LLX = 4% (LL=1)

DX{LLX+1) = FV + suMml

DX(LLX+4) = X1 * Y(9) / (Y(4) * Cci6))
DX(LLX+2) = FG + DX(LLX+4) + C(31) + SuM2
DX(LLX+3) = X1 % Y(8) / C(6)

A = (Y(22) = 20%Y(24)) / Y(4)

Q2 = Y(15)%#/7(15)%(4ABSe (DX(LLX+3)) + C(14))
R
R COMPUTE F MATRIX
R

FO11) = DX(LLX+3) / X(1)

FU12) = DX(LLX+4) * Y(4)

FU16) = DX(LLX+4) / X(1)

FO17) = = DX(LLX+3) / Y(4)

FU18) = = DX(LLX+4) 7/ Y(4)

FI1) = 2%FVv/Xx(1)

F(2) = sUM2 * x(1)

F(3) = (v(21) - 2e0%Y(23))/Y(4) + C(8)*FV
FI5) = FV / Y(5)

FI6) = F(16) + (FG-SUM2)/X(1)

FO7) = F(17) =~ SUMI/X(1)

F(B8) = A + F(18) + C(B)*FG

FU10) = FG 7/ Y(5)
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F(25) = C(8) * +ABS<(DX(LLX+3))

R
Q(l) = FV¥FV*C(40)
QL2) = FV*FG*C(41)
Q(3) = Q(2)
Q(4a) = FOHFG*C(43) + C(42)%Y(1)*Y (1)
LLP = NP2*(iLiL=-1)
R
R

T*H PDOT1ls FOR 1
M = NPx(I-1)

T'H PDOT1ls <OR J
LM NP*{J=~1)

IJ M+ J + LLP
DP(1J) = Va0

T'H PDOT1s FOR L

1’1.I.G.Np

1919JeGeNP

19loLeGeNP

IL =M+ L

LJ = NP*(L-1) + J

JL = M + L

roLTl DP(IJ) = DPIL1J) + FILY¥PILY) + PUIL)*FOJL)
DP(LLP+1) = DP(LLP+1) + Q(1)
DP(ILLP+2) = DP(LLP+2) + Q(2)
DP(LLP+6) = DP(LLP+6) + Q(3)
DP(LLP+7) = DPILLP+7) + Q(4)
DP(LLP+25) = DPILLP+25) + G2
W'R N( D «EC us FI'N

R
R

R(1) = Q(l) + C(18)

R{2) = Q(2)

R({3) = Q(3)

R{g) = Qo) + C(1B)/X({1)ePel
Al = R{1)#R(4) = R(2)#R(3)
R1(1) = R{4) /7 Al

R1(2) = =R(3) / Al

R1(3) = Ri(2)

R1(4) = R(1) / Al

H(1) = 20 * FV / X(1)

H(2) = = FG * X(1)

H(3) = C(8) * FV

Hi4) = = H(Z2)

A(s) = FV 7/ Y(b)

H{6) = 2 * FG / X(1)

H(7) = FV 7/ X(1)

H(8) = C(8) #* FG

H(9) = = H(T)

H(10) = FG / Y(5)
R

THROUGH PHTs FOR I = lelsleGebd
LM = 2#%]
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PHILM=-1) = ve0

PH(LM) = 040

THROUGH PHTs FUR J = 19l9JeGeb
Id = 5%([-1) + J

FHILM=1) = PHILM=1) + P({IJ)*H(J)
PHT PHILM) = 2H(LM) + PIJ)¥H(J+5)
THROUGH ADDGSs FOR I = 19l91eGed
ADDGS PH(T) = PH(I) + Q(I)
THROUGH FORMKs FOR I = lslsIleGeb
I = 2%]
NETJ=1) = PROIOU=-1)%R1(1) + PH(IJ)#R1(3)
FORMK KOTJ) = PHITU=-1)#R1(2) + PHIIJ)I*R1(4)
THROUGH KRKTs FOR I = l9lsleGeb
THRCUGH KRKT9 FOR J = 19l9JeGeb
IV = o%(I=1) + J
IL = 2%]
LM = 2%
KRE.T ECIV) = KOIL=-1)*(ROD)¥K(LM=-1) + R(2)*K(LH4)) + KEIL)®*(R(3)*
I KILM=1) + RU4)*K(LM))
R
R FINAL DERIVATIVE OF P MATRIX
R
THROUGH PDOT2s FOR I = 19lsleGeNP2
PDOT?2 DPILLP+I) = DP(LLP+I) - E(I)
F'N

E'N
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R DUAL FILTER INTEGRATING ROUTINE
R SUBROUTINE RUNKUT
R

EXTERNAL FUNCTION (STEPNO)
PROGRAM COMMON XIN(5)eX(5)sXX{5)9DX(20)sPIN(25)sP(25)
1 PP(25)sDP(100)sCI50)sN(30)sY(30)sT(10)sCT(1N00)
INTEGER ToJsKsNosLLyLLIaNXsNX29sNX3sNENT s STEPNOINORTAB
INTEGER Mo NP sNP2yNP22eNP23sCOUNToL s T U IKeKLoLJ
INTEGER MEAS
DIMENSION Nl{4)s TAB(8)s R(3)
ENTRY TO RUNKUT
W'R STEPNO oGev
T'O ENTRY
O'R STEPNO «Le O
EXECUTE PRINTSS(FRRET)
F'N
OTHERWISE
T'0 BEGIN
END OF CONDITIONAL
SEGIN DT(2) Oe5
DT(3) Oe5
DT(4) 140
MILF = C(6)*C(20)
C(18) = 0.0

NX = N(13)

NP = N{14)

NP2 = NP * NP
NP22 = 2 * NP2
NP23 = 3 % NP2
MEAS = N(9)

WHENEVER X(3) «Ge C{16)s N(9) = 0
NX2 = 2 % NX

NX3 = 3 ® NX

WIR N{10) eNEe Zs 110 AUXI

T'H TABLEs FOR I = 191s1eGeé

lABLE TAB(I) = CT(I+3)
NENT = 7

AUX | EXECUTE AUXLRYe«(PRT)

PRT N(25) = O

EXECUTE CDELT4(0)
WIR N(26) «Ge 1ls T'O AUX2
PRINT FORMAT PGSKIP
PRINT FORMAI HEAD1
PYT XOUTs T(1)eX(1)%C(28) 9X(2)%C12)sX(3)*C(6)sX(4)*MILES
1 Y(6)%C(2)sPHIDOT®C(2)sY(5)
PRINT FORMAT HEAD2
T'H DIAGONs FOR I = 1s1lsleGeb
J = 5%(]=1) + 1
D1AGON DP(I) = SQRT(P(J))
P'T SIGMAy DP(1)%#C(28)sDP(2)*C(2)sDP(3)*MILEsDP(4)*MILEIDP (D)
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I = 1
J =1
T'H CROSs FOR n = 1919KeGelD
J = J + 1
W'R J eLEse 53 110 GOONN
I =1 + 1
J =1 + 1
GUUNN L = 5%(I-1) + J
DP = DP(1I) * DP(J)
CROS DP(K+2) = P(LL) / DP
P'T CURREs DP(6)eeslDPI(15)
AUX ¢ EXECJUTZ AUXLRY o (SQUASH)
FYN
SwUASH EXtCJTZ RelbUCES (ERRET)
F'N
ENIRY WIR N(1l4)eFedaANDeoABSe (Y(2))eGEeC(15) sEXECUTE XPANDe (ERRET)
COUNT = ¢
INITAL T'H XINITs FOR I = 19lsleGeNX
XINIT XX{1) = X(1I)
T'H PINITs FOR I = 1sls]leGeNP2
PINIT PP(IY = P(1)

COUNT = COUNT + 1
WIR COUNT oGe 3s T'0O WRONG

k COMPUTE DERIVATIVES

EXECUTE DERVIVe (1)

TE3) = T(1)

T'H LOOPs FOR VALUES OF LL = 24344

DEL = T(2) * DT(LL)

Tt1) = T(3) + DEL

LL1 = NX * (LL - 2)

T'H XSTEPs FOR I = 191ls1eGeNX
X5Teb X(I) = XX(I) + DX(LL1+I) * DEL

EXECUTE AUXLRY«(GOBACK)

LL1 = NP2#*(LL=2)

T'H PSTEPs FOR 1 = 1919s1eGeNP2

PSTFP P{I) = PP(I) + DP(LLI1+I) * DEL
R
EXECUTE DERVIVe (LL)
LOOP CONTINUE

DEL = DEL / 6eU
T'H NEWXs FOR I = 1slsleGeNX
NEWX XCI) = XXCI)+(OXCI)+2e* (DX (I+NX)+DX( I+NX2) )+DX (I +NX3) ) #DEL
EXECUTE AUXLRYe(GOBACK)
WHENEVER X(3)eGeC(16)
N{9}) = 0
OTHERWISE
N{9) = MEIAS
END OF CONDITIONAL
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T'H NEWPy FOR [ = 1l9leleGeNP2
Nbw# P(I) = PP(I) + (DPUI) + 24%(DP(I+NPZ) + DP(I+NP22))
1 + DP{LI+NP23)) * DEL
J = NP + 1
T'H TSTPNGs FOR I = 1esJs]eGeNP2
WIR P(I) eLe Oe0Os TtO PRINT
TSTPNG CONTINUE
R
WIR T(1) eLe T(6)s F'N
N(25) = N(25) + 1
WIYR N(25) oNEe N{11l)s FIN

N(25) = 0
PRINT EXECUTE PRINTSe{ERRFET)
F'N
GOBACK EXECUTE RZDJCE(ERRET)
T*O INITAL
WRUNG PRINT COMMENT 5COUNT GREATER THAN 3 IN RUNKUTe®
ERRET ERROR RETURN

SUBROUTINE PRINTSe

000K

INTERNAL FUNCTION

ENTRY TO PRINTSe

W'R N(26) oGe ¢ FI'N

PRINT FORMAT XOUTs T(1)eX(1)%C(28) X (2)%C(2) s X(3)%C(0)

I X(4)®MILEsY(6)%C(2) s PHIDOT#C(2)9Y(5)

T'H DIAGs FOR 1 = lelelaeaGeNP

J = NP*(I-1) + 1
CLAD DP(I) = SQRTW(PLJ)INEGP)

T'O DIAGNLINP)
DIAGNL(4Y  PYT SIGMAs OP(1)%C(28)9DP(2)%#C(2)sLP(3)XMILESDP (&) *MILE

V'S SIGMA = $1HO 5E 1848 #%

KL = 6
TtO CRSPRD
DIAGNL(5) PIT SIGMAs DP(L)#C(28)sDP(2)%C(2)9DP(3)*MILEsDPU&4)*MILEsLP L)
KL = 10
CRSPRD I =1
J =1
T'H CROSSy FOR K = 191sKaGekL
Jg=J + 1
W'R J «LEe NPs T'O GOON
I =1 + 1
J=1+1
GOON LL = NP*(I-1) + J
DP = DP(1) # DP(J)
CROSS DP(K+NP) = P(LL)/DP

P*T CORREy DP{NP+1)aeeDP(NP+KL)
V'S CORRE = $1H 10F12.8 /*%
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WIR NP oFe w9 PRINT COMMENT & $
FEN
NE O PYT PNEGs I9 P(l)eeeP{NP2)

VYS PNEG = $//31H P MATRIX DIAGONAL ELEMENI! NUe I3y
1 211 AAS SHFCOMc NEGATIVEe /29H THE ENTIRE P MATRIX FOLLOWSe
7z 7/ D(5E)5e89/) %%

FRROR RFTURN

E'N

SUBROUTINE AUXLRY

D 010D

INTFRNAL FUNCTION

FNTRY TO AUXLRY.

Y(4) leO + X(3)

Y(u) C(5) 7/ Y(4)ePel

Y(>5) ClT)Y #* cXPe(lT(8)HX(3))

Y{(8) SINe (X))

Y(v) COSe(X{2))

TO1n) = CU023) + (CU26)+C(£5)%X(3)) = Y(5)
CulNT <L WIR T(l)eLFeTAN(3) o¢URe NENT oGEe N{3)s Tty INTEKP

TAB(L1) TAtH(3)

TAB(2) fab(4)

TAB(3) CTUNeNT+1)

NENT = NENT + 2

TARB(4) = JTONENT)

Tro CUNTRL
INTERP PHIDOT = (TAR(4) = TAB(2))/(TAB(3) - TAB(1))

Y{6) = TAst(2) + PHIDOT % (T(1) - TAB(1))

YUT) = COSelY(5))

R = C{28) #* Y(s5) #* X(1)

YEl6) = = ((3) # R #* X(1)

v{ilu) = (C(a) # R

YULi7) = Y(lu) % Y(7)

Y(cg) = SlivelY(05))

Y{1) = = Y(1l0) * Y(2)

WPk Ni{1l4)ebe5 oANUe oABLe(Y(2))ebLeCl15)s ERROR RETUKN

WIR N{l4)eFes4s Y(3) = Y(2) % PHIDOT / Y(7)

Fin

E'N

SUBROUTINE REDUCE

xT 00 xR

INTERNAL FUNCTION

E'O REDUCE

WIR STEPNO eFe O T'O REDUC '
T'H ScTXe FOR I = 191sleGeNX



SETX

SETP

REDUC

PC
cPC

DIVRYD

IMwC

NEWPP4

NEWP4L

X(I)y = XX{1)

TYH SETPy FOR I
P(I) = PP(I])

PI'T PTMEs T(1)
V1S PTME = $HeU
PRINT COMMENT %
T(1) = T(3)
EXECUTE PRINTS.
N(1l&4) = &

NP = N(14)

NP2 = NP * NP
NP22 = 2 * NP2
NP23 = 3 % (P2
EXECUTE AUXLRY.
Al = C(13) * YI(1
A2 = X(1) » Y(17
XX(1) 2.0 * Al
XX (&) A2 + C(1
XX(2) - X<(4)
XX(3) c(3) * A
XX(5) Al 7 Y(5
Al = 0,0

T*H CPCy FOR I =
DX(1) = 0.0

T'H PCs FOR J =
IJ = 5%(1=1) + J
Dx(I1)y = DxX(I) +
Al = Al + xX(I)
T'H DIVBYDs FOR
DX{Iy = DX(I) /

T*H IMWCs FOR I

T*'H IMWCs FOR J

IJd = 5%(I-1) + J
DP(IJ) = 040

WIR TeEeJdy DP(IJ
DP(IJ) = DP(1J)

T*H NEWPP4s FOR

T*H NEWPP4,y FOR

I = 4%(1-1) + J
PP(IJ) = 040
T'H NEWPP4,

IK = 5%(]-1)
T*H NEWPP4,

KL = 5%(K=-1) + L
LJ = 5#(J=1) + L
PP(IJ) = PPLIJ)

T'H NEWP4y FOR 1
PLIV = PPIL(I)

P*T CHANGE, T(1)
VtS CHANGE = $H,

FOR
+ K
FOR

158

= 19l9leGe25

Y{6)*C(2)
AT TIME = 49F10e59He PHI
CONDITIONS BEFORE SWITCHe$

6)

) / Y(16)
/ X(1)

2) / A2

1
)

1’1’106.5
19lsJeGe5

P(I1J) * XX{J)
* DX(D)

I = 19lsleGeb
Al
= leleleGab
= l’l’JoGoS

) =
- DX
I =
J =

K 1l919KeGeb

L

l’liLoGos

+ DP(IK) #* P(KL)
= 191914GeNP2

* DP(LJ)

OAT TIME =

e9Fb6el*P

esF6eloHes THE COVATIANCE MATRIX D
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1TMENSION IS REDUCED TO 4a9/%%
EXECUTE PRINTSe(ERRETR)
EXECUTE CDELTe(=-1)
F'N

ERRFTR ERROR RE TURN
E'N

SUBROUTINE XPAND

LT 00O

INTERNAL ~“UNCTION

EYO XPANU e

PYT SwITCHs T(.)

PRINT COMMENT & CCNDITIONS LLFORE SWITCHe$
EXeCUIL PRINTS.

N{l4) = 5

NP = N(14)

NP2 = NP % NP

NP22 = 2 # NP2

NPZ3 = 3 # NP2

AXCL) = = 240 % Y(5) / X(1)

Al = X(1) % Y{(17) 7/ Y(16)
XX(2) = Y(5) % (Al + C(12)/A1) / C(l13)
XX(3) - Cv8) % Yui5H)
XX(4) - XX(2)

PP(25) = 0460

TYH MPMs FOR 1 = 191s]leGeds
DX(I) = (o0

T'H MPs FOR J = 1919JeGeb
1 = 4%([~-1) + J

IK = 5%(]-1) + J

PRUIK) = P (1J)

Mp DXCL) = LXUD) + PUIJ) 3 XX(J)
MPM PRP25) = PP25) + XX(1) #* Dx(1)

T'H NewP5y FOR I = 19lsleGesd
NFwP5 PUI) = PE(])

TYH ADDRSs FOR I = 131914Get
J =1+ 20
P(J) = DX(1)
J =5 % ]
ADDRS PLJ) = Dx(I)
VIS SWITCH = $HeOAT TIME = esF10e5sHes THE CUVARIANCE MATRIX
1 HAS bEEN EXPANDED TU 5Xbes/%*%
EXECUTE PRINTSe(ERRETX)
EXECUTE (DFLTe(=-1)
FIN
ERRETA ERROR RE TURN
EYN
R
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R

VIS XOUT = $1H FYe¢59F13e39FlbaloF130ctt 1Ve92F 100l 10y 5
V'S PGSKIP 4 $//1H S515esHeDUAL FILTERIING Ut PERFECT MEASURLiMEN
1TSe *%

V'S HEAD1=%///1H St s4HTIMESBy4HVELeS1IO Y HUAMMASB s 4HAL T o

1 S1195HRANGESG6 s 3HPHISTe6HPHIDOTSG 9 3HikHU /1M S&sarisL eS8y

2 SHFPSe SO94HDEGeS993HF TeS1295HNeM] o 06941iLEGe /%D

VtS HEAD2 = $1t10 S10926HERROR COVARIANCE mATRIXe » /

1 S5eHeFIRST LIiiz) S ESTIMATION ERKURS Iiv VELsGArMMAS /LT 9ivii0
2eRHOe /59 sHe SECUNY LINE) CORRELATION Cuitr ICIENTS 1UR)

3 /S8yHeFILTER =) VeOsV-"HIV-ReV-RHUsU~Hs =K yG=RHU M=K 9i1=lHU 9k
4=RHQe /SBeHeFILTER B) V=0sV-HsV-KeG-tsu~RKsH=Re/¥*%
R

END OF FUNCTION
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R vunb FILTERING U1 FLRFCCIMCASURKLMENTS

R SUBRKUULTINL DERVIV

EXTERNAL FUNCTION (LL)

PRUGK A CUl Uiy XINCL Yo RO )9 AK{D ) oAl U)ot 1ot Jei ()
1 PP(L‘))'U}-(J.()U)9(.('JU)9N(3H)y'f(j())ol(1())9Caq;,C-;);)‘;
R

INTEOGUK Toedebsirisiy Pdellobvisbousdlolisblasilioiv oivic
DIMENSTON +#{25)9F(25)eH(1N)
R

ENTRY 10 DERVIVa

WK LL oeGe Us 11'C CNIRY

NF = N(1g)
Wl = leU 7/ 2y
F'N

ENITRY NP = N(14)

NEG = Np # ap

X1 = Ctzd) = X))

Fv = Y(16)

Fo = Y(iv)

Ylecc) = Yia) & ((:2) / Clcr)

YOLL) = Y(s) # Y(22)

Ylce) = YUlv) % Y(22) /7 X(1)
Y(24) = = v /7 C(28)

Y{23) = v(24) » Y(§&)

YU24) = Yl24) % Y(S) / X(1)
SUML = YI(Z1) + Y(23)

SUMz = Y(Z22) + Y(24)

LLX = 4%(LL-1)

DXILLX+1) = FV + SUML
DXULLX+4) = X1 * Y(9) / (Y{(4) * Cloy)
DXCLLX+2) = FG + DA(LLX+4) + C(41) + SUMe2

DX(LLX+3) X1 * Y(8) / C(6)

A= (Y(22) = 2e60%Y(24)) / Y(4)

W2 = Y(LO)#Y(1v)% (eABSe (UX(LLX+3)) + Clla))
TY0 MESURE(NP)

[}]

R .

R P MATRIX 15 4=DIMENSIUINAL

R
MESURE(4)  TU'H F4ZFROs FUR I = 19lsleGelb
F4ZERO FI{I) = 040

R

R COMPUTE F MATRIX

R

FI9) = DX(LLX+3) 7 Xx(1)

FOL10) = LX(LLX+4) * Y(4&)

FO13) = DX(LLX+4) / X(1)

FO14) = = DX(LLX+3) / Y(4)

FOC15) = = DX(LLX+4) / Y(4)

Fl2) = (SUM2 + FG) * X(1)

FO3) = (Y(21) - 240%Y(23)) / Y(4)
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MESURE(5)
F5ZERO
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F(4) = = FG * X(1)
F(5) = F(13) - (FG + SUMZ2) /7 X(1)
F(6) = F(1l4) = DXILLX+1) 7/ X(1)
F(7) = A + F(1D)
F(B8) = FVv 7/ X(1)
K

R

W'R N(9) oFEe Os T'O FINDDP

Al = FG / FV

A2 = X(1) * Al

A3 = (A2 = C(lc)/A2) /7 C(13)
A33 = (A2 + Cluiz)/A2) / CL13)
A4 = DX(LLX+1) /7 X{1)

-+

[

wolhsAall))

R
R FORM H MATRIX
R

M = (A2 4+ 160/22) /7 (C(11) - COL1OMN)

H(1) = YU(S)®(A3% (FGHOUM2Z)+UBI*UX(LLA+S)—ca¥Ag) /X1
Hi&4) = = Y{o)xlA3RY(3) + A3sHt(8) + Ledktu)
H(2) = = Hia) + Y(5)#(2e0%LUie + _loixrliv)
H{3) = Y(2)*{2e¥(F(3)=C(BI¥rV)/Rt{l)=ts3%lA-Clul»ru))
R
R FORM H'Q-1 H PRODUCT
R

Q2 = 140 / Q2

T'H HQHs FOR T = 19lsleGe4

T'H HQHe FOR J = 1lelesJeGeé

IJ = 4%{][-1) + J

E{IJ) = HUDI) * H(J) * Q&

H=H* H ¥ Ql

gE(6) = E(6) + H

£{8) = F(8) - d

E(l4) = E(14) — H

E{1l6) = E(1lo) + H

T1O FINDDP

R

R P MATRIX 1S 5=~DIMENSIONAL

R

T'H FSZEROs FOR I = 191l9leGe25

F(I) = 0eC

F{11) = DX(LLX+3) / X(1)

F(1l2) = DX(LLX+4) % Y(4)

F(l6) = DX{LLX+4) / X{1)

F(17) = = DX(LLX+3) /7 Y(4)

F(18) = = DX(LLX+4) /7 Y(4)

F(2) = (SUM2 + FG) * X(1)

F(3) = (Y{(21) = 2.,0%#Y(23)) 7/ Y(4&)

F(4) = = FG * X(1)

Fle) = FL16) = (FG+SUM2) /7 X(1)

F(7) = F(17) = DX(LLX+1l) / X(1)
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F(8) = A + ~(18)
F9) = FV /7 X(1)
FU25) = C(8) * ¢ABSe(LX(LLX+3))

R

R

WYR N(9) oEe Os T'U FINDDP
R

HE1) = 240 % FV / X{(1)
H(2) = = FG * X(1)
H{3) = C(B) * FV

H(4) = = H(2)

H{5) = FV / Y(5)

H{6) = 2 ®* <G / X(1)
H(7) = FV / X(1i)

H(8) = C(8) * FG

H{9) = = H(7)

H{1U) = FG / Y(5)
Rl = FV % FV # (C(40)

Rz = FV #* FG * C(4])

R3 = FORFO*C(43) + C(42)#Y(1)ePe2
Al = Rl ¥ R3 - R2 * R2

A2 = R1

R1 = R3 / Al

RZ = - R2 / Al

R3 = A2 / Al

T'H HRHy FOR I 1slsleGeb

T'A HRHe FOR J = 1919JeGed
IJ = 5%(1=1) + J
HkH c(lJ) = HET)*(R1I*H(J)+R2%¥H(J+5) J+HH(I+2 ) (R A (J)+RI¥H{J+2) )
R
R COMPUTE DERIVATIVE OF P MATRIX
R
FINDDP LLP = NP2%(LL-1)

T*H PDOT1ls FOR 1
M = NP*(]1-1)

T'H PLOUT1y FOR J
LM = NP#*(J=1)

i =M+ J+ LLP
DPEIJ) = 040

T'H PDOT1s FOR L

19ls]eGeNP

1219JeGeNP

lslslLeGeNP

IL =M+ L
LJ = NP*([L=1) + J
JL = LM + L
PLOT1 ODPUIJ) = LPUIJY + rLIL)*P(LJY) + PUIL)*F(JL)

W!'R NPebe5s DP(LLP+25) = DP(LLP+25) + Q2
W'R N(9) eEe O FI'N
R
R FINAL DERIVATIVL OF P MATRIX
R

T'H NLWDPy FOR I = 1lslsleGeNP
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T'H NEWDPs FOR J = 1elsJeGeNP

IJ = NP*(I-1) + J + LLP

T'H NEWDPs FOR L = 19leLeGeNP

IL = NP*(]=1) + L

TY'H NEWDPs FOR M = 1919MeGeNP

LM = NP*{i =]1) + M

LJ = NP*(M=1) + J '
NEwDP DP(IJ) = DP(LIJ) = PLIL) * E(LM) ¥ P(LJ)

m T
zZ Z




ENTRY
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R ROUTINEL FOR COMPUTING TIMe STEp
R

EXTERNAL FUNCTION (LL)

PROGRAM COMMAON XIN(5)sX(5) o XX{5)sLX(0)oPIil(o)oPico) s
1 PPE25)sUP(100)9C(HC)aN(30)sY(30)9T(LU)C1(1000)
R

DIMENSION 2(50)s DT (50)

INTEGUR IsLLsN

E'O COELT.

VIS 2(1) = 3009118691200 9140e923009420e910.Use

ves DT(1) = 00i90l9e0500l19629e59e5

W'R LL oNEe Os T'O ENTRY

I =1

PRINI COMMENT $» NEW VALUES OF 2 AND DT FOLLUN %

READ AND PRINT DATA

T{2) = DT(])

PtT CHGDTs I 1(2)

W'R T(1) eLEe Z{(1)s FI'N

I =1+ 1

T€2) = DT(I)

P'T CHGDTy TIs T(2)

VIS CHGDT = $/He I = e9llsHes DT = e9FYet9/*3

TYO ENTRY

E'N
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APPENDIX B

DIGITAL COMPUTER PROGRAM FOR COMPUTATION
OF INITIAL COVARIANCE MATRIX




______ print covar_mad . . et e
" 1NKS5.,1 167
"~ COVAR  MAD © 08/18 1055,1 B

NIMENS |0N v(sny, P(fn) H('O),R(Gn) VH(50), VR(SO) RHO(6)

_________________________ INTEGER |

P
-v's.#=0,,-7,07,5,01,-3,18,2,32,-6,13,-h,33,11.12,
1 ,74,-6,37,,33,-3,96,1,03%3,-1,19,-8,73,6,03,~1,45,-12,66,
22 =10, 524-‘.1428.4.59‘ ;06, ol; 07 7..0'};.1..?1..1 a.).ll_ﬁ_n 02_‘? _17
V'S H(29) = -4,87,-2,38,-6,94,7,.63,~-1,19,4,81,-3,28,-1, 63,
:-l--_s..~83'-l.,l3' 3. 7,"2."24,-0.“5;-3. 2,7.;3,..7),3‘_-“6...6.6.1 12.‘33' "‘n 8.81-_
$? 2.5%,2,57,7.27,=-4,95

SR M

vis n(1) ='3: 53 -26,16,13,12,-14,91,30,6,21.14,-61.09,-2.95,

+1 37,.66,-5,22,15.28,=4.,.46,2, Zﬁ,kQJQA+_2&L11h&L11,R).?ZL“_____
2 51,72,7. 23 3.1,-3,73,3.25,5.,1h,-40,2,-8,95,5.61, .33,
A“_"_“_m,"m_““_”:3,910.39,22.6,13.55,3u.05,-h2.22,10 66,-18.85,14,75,9.67,_. __

:4 27,9,%,18,-17.22,15,02,6,%,21,01,-19,39,33, ng,-sz 47,
_— --th =23, Qh,-lo 49, -13 79,-u0 48,23, us
: *R
VlSmMHLl)-;.rlﬁz,lu,118,55,-ﬁl.Si,ﬁl.ssk:lkatllﬁzﬂﬁkﬁh_
:1 277.22,13.&2,-]71.2,25.“7,-71.35,20.01,-10.69,-223.27,

— $2.133.07,=37,26,-299,4,-230.15,-23,,13,8,16.98,=1b.64,
: :3 -23,32,182,72, e 27, -?5 11, -l.l2 48.2,-1C3,35,-61.69,
___________________________ sh_ =155.24, IQI.SF -“0 52,u7.)2 -67.51, -h3.7,-12] L2, . IR

¢5 «14,62,78,31,408,08,=-28,35,=05, 19, 8().25 -15%, 28,
¢ G 02n,85,1nq hﬂ,thYS#GZ 76,183,721, -1nG.J7
N
________________________ VIS, VR(1). . «6%,-11,27,5,26,-4,23,13,84,10,07,=24.47,.
:1 =1.99, 11 hu,_ n3,11.,03%,-2,63,4,33,17,14,~-13.38,2.93,
- :°.2&*ul,1hrll,2.35,:1t26,1.33,:1+ﬂ2+¢ﬁﬂ+:lh+1+:1495,:.15, _______
3 -,12,-5,96,11,91,1,6,15,75,-16,45, ,36,~-12.8,7.92,3%.12,
<4 _13,05,3.68,=-8,0,4.21,=-,73,5,56,=-6,17,1%3,726,=-27.81,
) -11.71,-r 09 -R .15, -1y, 99 11,99
_;J‘-__-.~__-___<___h______._ e e
f=0,017453292 _
________ SVEL = 38847, 0 .
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